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Abstract—This article summarises the creation of two 
approaches how to produce pseudorandom integers with 
binomial distribution and their comparison with other 
selected implementations. The first approach does the work 
by preparing a probability table searchable by the binary 
search algorithm, and the second one is about generating the 
values using the Galton board simulation. The second 
approach is slower (significantly slower for bigger numbers 
of trials) but is applicable in situations where the probability 
of success (connected to the binomial distribution process) is 
not uniformly distributed. 

I. INTRODUCTION 

The motivation for this algorithm was seeking a proper 
generator for a simulation system that is currently in 
development. This simulation system is developed to be 
used in the educational process; however, its other use is 
not excluded either. Originally, a Poisson distribution was 
needed, but the binomial distribution came across as an 
algorithm that was easier to implement (especially the 
Galton board simulation variant), and that may produce 
Poisson-like results when proper parameters are passed to 
it [1, 2]. 

This is not the first time we deal with the algorithm’s 
optimisation. Back in 2020, we published a paper at this 
same conference that announced an improved algorithm 
for calculating the distance between a point and a line [3]. 
This encouraged us to continue with such activities. Any 
small improvement is a contribution, especially when few 
people pay any attention to a specific area. Of course, it is 
ineffective to put energy into things nobody needs. In this 
case, we needed it, and we hope it helps anyone else. 
Thus, we will publish the algorithm in the public domain, 
like in the previous case. 

All algorithms, including ours, are implemented in 
Java. We have used this programming language in the 
education process for several years (see, e.g., [4]), and we 
are sometimes inspired by the work of other colleagues in 
this area and connected areas (like [5, 6]). 

II. THE BINOMIAL DISTRIBUTION 

The binomial distribution shows the probability of 
getting some result when some event occurs a specific 
number of times in case every single event is a result of 
two possible outcomes (for example, success or failure; 
hence the “binomial” in the name) [7, 8, 9]. 

The theoretical background is described on Wolfram’s 
page [1]. According to the page: “The binomial 
distribution gives the discrete probability distribution  of 
obtaining exactly n successes out of  Bernoulli trials. 
(Where the result of each Bernoulli trial is true with 
probability  and false with probability .)” The 
leaving part is thus the following formula: 

 .  

For simplicity, we may, for example, explain  as the 
number of heads from flipping a fair coin n-time. Then the 
probabilities of getting head  or tail  of a fair coin toss 
are the same: 0.5. 

We have found several implementations of the binomial 
distribution algorithm: Apache as part of Math3 library 
[10], CERN as part of Colt library [11], and as a part of 
SSJ (Stochastic Simulation in Java) library [12] that we 
compared with our implementation. The key input 
parameters for all implementations are  and  which 
have the meaning of the number of trials and the 
probability of success (of a single trial). Each 
implementation supports passing a custom pseudorandom 
generator to the instance used to calculate the outcome 
(number of successes; and thus failures) after the  trials. 

We had our own idea of the implementation in advance, 
which means before we started to search for the other 
implementations. All mentioned algorithms were released 
with some public domain licence, so we were able to 
investigate their code. We found out that all of them 
produce their results in real time by calculating the next 
generated value. We were headed in a different direction. 
Our algorithm was supposed to precalculate a table of 
probabilities and adapt it slightly that way so it would be 
searchable by the binary search algorithm. The table data 
adoption lies in creating increasingly arranged sums of 
probabilities (in a cumulative way) so that the data will 
represent “splits” that could be easily used to convert a 
uniform pseudorandom value (produced by a real number 
pseudorandom generator passed to the class instance 
during the construction) to a binomial pseudorandom 
integer. 

III. THE PREPARATION AND IMPLEMENTATION 

To prove that our algorithm is suitable for use in 
practice, we chose the following approach: 
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1. Analyse existing algorithms. 
2. Implement our algorithms (possibly with some 

variants). 
3. Compare the speed performance of all algorithms. 
4. Compare the distribution character of all 

algorithms. 
5. Evaluate the results. 

The algorithm was eventually implemented in two 
variants. One variant produces the binomial 
pseudorandom series using the uniform pseudorandom 
generator to get the probability of successes after  trials 
(just the resulting one) and a pre-calculated table for 
conversion. This is the faster approach. The other variant 
uses a non-uniform pseudorandom generator to get the 
probabilities of success for single trials; it gets the 
resulting integer using Galton board simulation and is 
slower in comparison to the first approach. The 
BinomialDistribution class chooses the variant 
internally using the RandomGenerator interface that 
declares the isUniform method that is used to make the 
decision. 

The first variant, in summary, implements the idea that 
is, at its core, simple (create a table that would map the 
uniform pseudorandom real number to a bionomically 
distributed pseudorandom integer). Having that in mind, 
the path to the implementation was quite straightforward. 
The instance variables are  (probability of success),  
(which is ),  (number of trials) and the table of 
splits (array of doubles) calculated from probabilities that 
separate single outcomes. This is the map that converts a 
uniform pseudorandom (real) number to a binomial 
pseudorandom integer. The table of splits is precalculated 
using the following pseudocode: 

array factorial[n + 1] 
factorial[0] = factorial[1] = 1 
 
for i = 2 to n 
    factorial[i] = factorial[i − 1] * i 
 
q = 1 − p 
array table[n] 
 
// Precompute the first value: 
// Notes: 0! = 1; p  = 1; so the 
// quotient also is: (n! / n!) = 1; 
// thus, the first value is: (1 − p)ⁿ 
table[0] = q^n 
 
i = 1 
j = n − 1 
while i < n 
    denom = factorial[i] * factorial[j] 
    quotient = factorial[n] / denom 
    rest = p^i * q^j 
 
    // Current probability adds to the 
    // (sum of) previous ones to get 
    // the continuous scale: 
    table[i] = table[i − 1] + 
        quotient * res 
    ++i 
    −−j 
 
for i = 0 to n − 1 
    splits[i] = table[i] 

The table is created using BigDecimal class (so the 
pre-calculation process was precise enough) and then 
converted to an array of primitive doubles. Then, when the 

class is asked to produce a binomial integer, the uniform 
real number pseudorandom value is generated, and this 
value is searched within the table of splits using a binary 
search algorithm. The position found in between the splits 
of the table is the generated integer. There are some corner 
cases to make quick decisions and to prevent some 
overflows, but the core is simply a binary search. This 
approach implies meeting one condition: the table must 
not be pre-calculating each time the binomial integer is 
generated. The class does the pre-calculation only during 
the initialisation process or after changing one of the 
parameters (  or ). 

The second variant computes the resulting 
pseudorandom integer using the Galton board simulation 
(see, e.g. [13]). The principle is almost the same as used 
by BinomialConvolutionGen by SSJ [12]. The SSJ uses 
“the convolution method that generates Bernoulli random 
variates and adds them up.” It sounds like a different 
approach, but if you look at the two implementations 
closely (ours and the SSJ’s), you will find strong 
similarities. I believe that this is how you get the same (or 
at least similar) algorithm using different thinking. From 
the results, it looks like the Galton simulation algorithm 
(ours) is slightly faster than the convolution method (SSJ; 
the cumulative data shows a difference of about 0.1 
microsecond), but this is negligible. 

IV. THE TEST OF UNIFORM GENERATORS 

All algorithms are based on the use of “third party” (in 
the meaning “outside the class” – in fact, it might be 
implemented by the same party) pseudorandom generators 
(presumably with uniform distribution) used to generate 
single “tosses” (trials) that determine the resulting 
binomial value. Each implementation came with its own 
uniform generator (hence the note about the “third party”), 
and we also used the standard Java implementation in the 
process. So following generators were considered: 

• Apache – Well19937c generator [14] (henceforth 
referred to as “ApacheWell”). 

• CERN – MT19937 MersenneTwister [15] 
(henceforth referred to as “CernMerTwi”). 

• SSJ – MRG32k3a combined multiple recursive 
generator (CMRG) [16] (henceforth referred to as 
“SsjMrg”). 

• Standard Java Random class generator [17]. (See 
also: [18]; henceforth referred to as 
“JavaRandom.”) 

We are aware that the speed and quality of a specific 
uniform generator affects the results of the binomial 
generator, so we tested the speed of all uniform generators 
and selected two representatives to compare the speeds of 
all binomial distribution algorithms. (Note that all 
binomial classes support passing any uniform generator 
during the construction; possibly later too.) Table 1 
compares the speeds of uniform generators after a hundred 
thousand operations. We measured and compared the 
performance of three instance methods: the one that 
generates the pseudorandom integers (nextInt), doubles 
(nextDouble), and longs (nextLong; if the generator 
supports it). The tests clearly show that the fastest 
generator comes from CERN (referred to as 
CernMerTwi). Therefore, the first choice was this 
generator. Other generators vary according to methods 
producing random numbers of different data types, so we 
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decided to use the default Java generator as the second 
one. 

TABLE 1. 
COMPARISON OF TIME PERFORMANCE OF FOUR 

ALGORITHMS USED IN FOCUSED IMPLEMENTATIONS. 

time [ms] nextInt nextDouble nextLong
ApacheWell 0.5158 2.8626 1.9630
CernMerTwi 0.3045 0.5966 0.5201
SsjMrg 1.4774 2.2272 -
JavaRandom 0.8264 2.5311 1.8659  

V. THE TESTS OF BINOMIAL GENERATORS 

A. The Setup 
After that, we started to compare the binomial 

algorithms. In the first test (the speed test), we compared 
the first variant of our algorithm (the split table variant) 
with three implementations enumerated in the beginning 
(Apache [10], CERN [11], and SSJ [12]). We will use the 
following labels for single algorithms: 

• the implementation in Math3 library – Apache 
[10]: ApaBin, 

• the implementation in Colt library – CERN [11]: 
CernBin, 

• the implementation in SSJ library [12]: SsjBin, 
• and our implementation: OurBin. 

The other variant (Galton board simulation) was 
compared only to the BinomialConvolutionGen by SSJ 
[12]. The labels for the two are as follows: 

• the BinomialConvolutionGen (SSJ library) 
implementation [12]: SsjCon, 

• the Galton board simulation: OurGal. 

We arranged all six algorithms in the tables and graph 
(below) in the above order. We performed this first test 
using two selected uniform generators: CernMerTwi and 
JavaRandom. This test is hardware-dependent, so we 
performed the measurement on more than one machine. 

After the first test, another test was performed: 
checking the characters of the distributions produced by 
all algorithms. We did that by producing and averaging 
the waste numbers of binomial values by all generators. 
Then we created a graph to visually compare the character 
of all produced binomial distributions. Seeing the data, we 
considered this test sufficient to prove that all produced 
distributions create the same character of data. We do not 
plan to use our algorithm in a safety-critical environment, 
so we did not perform any other tests. This test was purely 
algorithmic, and thus it was (and is) independent of 
hardware, so we ran it only on single hardware (machine). 

B. The Tests 
Originally, the speed tests were performed on three 

machines, but something went wrong with the tests on a 
third (oldest and slowest) machine, so the tests made on 
that machine were discharged. The results measured on 
the two remaining machines are in tables 2 and 3. Table 2 
shows the statistical means and average durations of all 
binomial generators while producing values in different 
magnitudes of powers of tens using the CernMerTwi 
generator, and table 3 compares the results while the 
JavaRandom generator was used. 

The second kind of test is supposed to show that all 
algorithms produce the same distribution. We wrote a 
simple testing application that was able to execute all 
generators a specified number of times (e.g., 1.500) with 
selected values of parameters: the probability of success 
(e.g., ) and the number of trials (e.g., 

). Then we created the number of 

TABLE 2. 
THE EXECUTION TIME (IN MILLISECONDS) OF POWERS OF TENS 

OPERATIONS MEASURED FOR ALL COMPARED ALGORITHMS USING 
THE CERN MERSENNE TWISTER MT19937 [15]. 

time
[ms]

two runs on machine 1 two runs on machine 2
median average median average median average median average

10ąrepetitions (of generating 10,000 values)
ApaBin 0.0400 0.0419 0.0365 0.0382 0.0293 0.0325 0.0298 0.0399
CernBin 0.0011 0.0016 0.0011 0.0016 0.0008 0.0013 0.0008 0.0016
SsjBin 0.0005 0.0006 0.0005 0.0006 0.0004 0.0005 0.0004 0.0006
OurBin 0.0004 0.0005 0.0004 0.0005 0.0003 0.0004 0.0003 0.0005
SsjCon 0.0025 0.0027 0.0025 0.0027 0.0018 0.0021 0.0018 0.0026
OurGal 0.0024 0.0026 0.0024 0.0026 0.0018 0.0021 0.0018 0.0025

10˛  repetitions (of generating 10,000 values)
ApaBin 0.3807 0.3825 0.3450 0.3469 0.2729 0.2848 0.2737 0.2878
CernBin 0.0104 0.0104 0.0103 0.0104 0.0075 0.0077 0.0076 0.0079
SsjBin 0.0042 0.0042 0.0040 0.0041 0.0029 0.0030 0.0029 0.0030
OurBin 0.0039 0.0040 0.0039 0.0040 0.0028 0.0029 0.0028 0.0030
SsjCon 0.0243 0.0244 0.0241 0.0243 0.0172 0.0178 0.0173 0.0182
OurGal 0.0237 0.0238 0.0236 0.0238 0.0170 0.0178 0.0173 0.0181

10ł repetitions (of generating 10,000 values)
ApaBin 3.8124 3.8266 3.4520 3.4651 2.7529 3.0532 2.7961 3.5228
CernBin 0.1004 0.1008 0.1007 0.1011 0.0740 0.0817 0.0738 0.0934
SsjBin 0.0410 0.0411 0.0412 0.0414 0.0317 0.0353 0.0286 0.0365
OurBin 0.0383 0.0385 0.0371 0.0374 0.0267 0.0297 0.0280 0.0358
SsjCon 0.2432 0.2439 0.2433 0.2441 0.1729 0.1916 0.1729 0.2214
OurGal 0.2358 0.2376 0.2355 0.2372 0.1718 0.1897 0.1730 0.2216

10  repetitions (of generating 10,000 values)
ApaBin 38.2117 38.2524 34.5804 34.6441 28.8365 41.0302 29.3039 43.0858
CernBin 0.9843 0.9860 0.9892 0.9910 0.7640 1.1075 0.7728 1.1258
SsjBin 0.4022 0.4032 0.4080 0.4092 0.2901 0.4282 0.2974 0.4431
OurBin 0.3790 0.3799 0.3681 0.3692 0.2692 0.3969 0.2866 0.4280
SsjCon 2.4347 2.4385 2.4352 2.4398 1.8139 2.5747 1.8589 2.7191
OurGal 2.3664 2.3723 2.3632 2.3694 1.7773 2.5541 1.8591 2.7085  

TABLE 3. 
THE EXECUTION TIME (IN MILLISECONDS) OF POWERS OF TENS 

OPERATIONS MEASURED FOR ALL COMPARED ALGORITHMS USING 
THE STANDARD JAVA GENERATOR [17, 18]. 

time
[ms]

two runs on machine 1 two runs on machine 2
median average median average median average median average

10ą repetitions (of generating 10,000 values)
ApaBin 0.0401 0.0416 0.0400 0.0414 0.0293 0.0324 0.0293 0.0325
CernBin 0.0012 0.0014 0.0012 0.0013 0.0009 0.0010 0.0009 0.0011
SsjBin 0.0006 0.0007 0.0006 0.0007 0.0004 0.0006 0.0004 0.0006
OurBin 0.0005 0.0006 0.0006 0.0006 0.0004 0.0005 0.0004 0.0005
SsjCon 0.0135 0.0138 0.0135 0.0138 0.0097 0.0106 0.0097 0.0106
OurGal 0.0136 0.0138 0.0135 0.0137 0.0098 0.0106 0.0098 0.0106

10˛  repetitions (of generating 10,000 values)
ApaBin 0.3820 0.3841 0.3811 0.3830 0.2712 0.2840 0.2721 0.2846
CernBin 0.0114 0.0115 0.0114 0.0115 0.0080 0.0083 0.0080 0.0083
SsjBin 0.0054 0.0054 0.0055 0.0055 0.0038 0.0040 0.0038 0.0040
OurBin 0.0050 0.0050 0.0051 0.0051 0.0035 0.0036 0.0035 0.0037
SsjCon 0.1342 0.1349 0.1342 0.1349 0.0945 0.0990 0.0967 0.0997
OurGal 0.1352 0.1360 0.1343 0.1349 0.0953 0.0998 0.0974 0.1005

10ł repetitions (of generating 10,000 values)
ApaBin 3.8246 3.8383 3.8161 3.8300 2.7046 2.8165 2.7362 3.3697
CernBin 0.1126 0.1130 0.1113 0.1116 0.0780 0.0807 0.0791 0.0975
SsjBin 0.0545 0.0547 0.0551 0.0553 0.0374 0.0388 0.0387 0.0481
OurBin 0.0501 0.0503 0.0497 0.0499 0.0341 0.0353 0.0352 0.0438
SsjCon 1.3435 1.3475 1.3433 1.3470 0.9450 0.9815 0.9451 1.1819
OurGal 1.3540 1.3577 1.3449 1.3486 0.9525 0.9903 0.9527 1.1909

10  repetitions (of generating 10,000 values)
ApaBin 38.3289 38.3759 38.2248 38.3050 28.5546 38.7209 29.1498 42.4460
CernBin 1.1093 1.1113 1.0971 1.0997 0.7938 1.1037 0.8354 1.2151
SsjBin 0.5259 0.5272 0.5400 0.5426 0.3797 0.5319 0.4014 0.5914
OurBin 0.4856 0.4869 0.4744 0.4763 0.3452 0.4843 0.3613 0.5327
SsjCon 13.4564 13.4704 13.4564 13.4771 9.9055 13.5042 10.0366 14.8562
OurGal 13.5635 13.5775 13.4773 13.4986 10.0234 13.6301 10.2116 15.0113  
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“batches” of those runs and calculated the three average 
values of the data: overall average, an average of upper 
bound, and an average of lower bound; to smooth the 
curves and get the variations of the data. These tests 
showed that all algorithms positively produce the same 
distribution. The application was also able to draw and 
export graphs of all kinds. Examples of the runs are in 
graph 1. 

VI. THE POISSON APPROXIMATION 

The initial motivation to implement our algorithm went 
through an attempt to get around implementing the 
Poisson distribution algorithm by implementing the 
simple version of the Galton board simulation. It produces 
binomial distribution convertible to an approximation of a 
Poisson distribution. Eventually, we created the table of 
splits algorithm that computes the table using a more 
complex implementation, but that does not mean that the 
original idea cannot be applied anymore. 

According to [1, 2]: The binomial distribution 
converges towards the Poisson distribution with mean  as 
the number of trials goes to infinity ( ) while the 
product  remains fixed, or at least p tends to zero 
( ). Therefore, the Poisson distribution with 
parameter  can be used as an approximation to 

 of the binomial distribution if  is sufficiently 
large and  is sufficiently small. According to the two 
rules of thumb, this approximation is good if (for 
example)  and , or if  and 

. 

VII. CONCLUSION 

After performing all the tests and evaluating the 
measured results, we can conclude that our solution is 
applicable in practice. Our approach is faster than selected 
algorithms (if you do not force the instances to 
re-initialize their tables too often) and produces the 
distribution of the same quality. The first next step is to 
include the algorithm in the existing framework [19, 20] 
and then use it in our simulation system that is currently in 
development. The simulation system is developed with the 
intention to use it in the educational process (as a kind of 
educational material) as we do regularly with other 
systems and software [21, 22, 23] at our department. Still, 
any other use is not excluded either. 
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