
Optimisation of Algorithms Generating
Pseudorandom Integers with Binomial

Distribution

Roman Horváth
Department of Mathematics and Computer Science, Faculty of Education,

Trnava University in Trnava, Trnava, Slovak Republic
roman.horvath@truni.sk

Abstract—This article summarises the creation of two
approaches how to produce pseudorandom integers with
binomial distribution and their comparison with other
selected implementations. The first approach does the work
by preparing a probability table searchable by the binary
search algorithm, and the second one is about generating the
values using the Galton board simulation. The second
approach is slower (significantly slower for bigger numbers
of trials) but is applicable in situations where the probability
of success (connected to the binomial distribution process) is
not uniformly distributed.

I. INTRODUCTION

The motivation for this algorithm was seeking a proper
generator for a simulation system that is currently in
development. This simulation system is developed to be
used in the educational process; however, its other use is
not excluded either. Originally, a Poisson distribution was
needed, but the binomial distribution came across as an
algorithm that was easier to implement (especially the
Galton board simulation variant), and that may produce
Poisson-like results when proper parameters are passed to
it [1, 2].

This is not the first time we deal with the algorithm’s
optimisation. Back in 2020, we published a paper at this
same conference that announced an improved algorithm
for calculating the distance between a point and a line [3].
This encouraged us to continue with such activities. Any
small improvement is a contribution, especially when few
people pay any attention to a specific area. Of course, it is
ineffective to put energy into things nobody needs. In this
case, we needed it, and we hope it helps anyone else.
Thus, we will publish the algorithm in the public domain,
like in the previous case.

All algorithms, including ours, are implemented in
Java. We have used this programming language in the
education process for several years (see, e.g., [4]), and we
are sometimes inspired by the work of other colleagues in
this area and connected areas (like [5, 6]).

II. THE BINOMIAL DISTRIBUTION

The binomial distribution shows the probability of
getting some result when some event occurs a specific
number of times in case every single event is a result of
two possible outcomes (for example, success or failure;
hence the “binomial” in the name) [7, 8, 9].

The theoretical background is described on Wolfram’s
page [1]. According to the page: “The binomial
distribution gives the discrete probability distribution of
obtaining exactly n successes out of Bernoulli trials.
(Where the result of each Bernoulli trial is true with
probability and false with probability .)” The
leaving part is thus the following formula:

 .

For simplicity, we may, for example, explain as the
number of heads from flipping a fair coin n-time. Then the
probabilities of getting head or tail of a fair coin toss
are the same: 0.5.

We have found several implementations of the binomial
distribution algorithm: Apache as part of Math3 library
[10], CERN as part of Colt library [11], and as a part of
SSJ (Stochastic Simulation in Java) library [12] that we
compared with our implementation. The key input
parameters for all implementations are and which
have the meaning of the number of trials and the
probability of success (of a single trial). Each
implementation supports passing a custom pseudorandom
generator to the instance used to calculate the outcome
(number of successes; and thus failures) after the trials.

We had our own idea of the implementation in advance,
which means before we started to search for the other
implementations. All mentioned algorithms were released
with some public domain licence, so we were able to
investigate their code. We found out that all of them
produce their results in real time by calculating the next
generated value. We were headed in a different direction.
Our algorithm was supposed to precalculate a table of
probabilities and adapt it slightly that way so it would be
searchable by the binary search algorithm. The table data
adoption lies in creating increasingly arranged sums of
probabilities (in a cumulative way) so that the data will
represent “splits” that could be easily used to convert a
uniform pseudorandom value (produced by a real number
pseudorandom generator passed to the class instance
during the construction) to a binomial pseudorandom
integer.

III. THE PREPARATION AND IMPLEMENTATION

To prove that our algorithm is suitable for use in
practice, we chose the following approach:

197979-8-3503-2033-6/22/$31.00 ©2022 IEEE

1. Analyse existing algorithms.
2. Implement our algorithms (possibly with some

variants).
3. Compare the speed performance of all algorithms.
4. Compare the distribution character of all

algorithms.
5. Evaluate the results.

The algorithm was eventually implemented in two
variants. One variant produces the binomial
pseudorandom series using the uniform pseudorandom
generator to get the probability of successes after trials
(just the resulting one) and a pre-calculated table for
conversion. This is the faster approach. The other variant
uses a non-uniform pseudorandom generator to get the
probabilities of success for single trials; it gets the
resulting integer using Galton board simulation and is
slower in comparison to the first approach. The
BinomialDistribution class chooses the variant
internally using the RandomGenerator interface that
declares the isUniform method that is used to make the
decision.

The first variant, in summary, implements the idea that
is, at its core, simple (create a table that would map the
uniform pseudorandom real number to a bionomically
distributed pseudorandom integer). Having that in mind,
the path to the implementation was quite straightforward.
The instance variables are (probability of success),
(which is), (number of trials) and the table of
splits (array of doubles) calculated from probabilities that
separate single outcomes. This is the map that converts a
uniform pseudorandom (real) number to a binomial
pseudorandom integer. The table of splits is precalculated
using the following pseudocode:

array factorial[n + 1]
factorial[0] = factorial[1] = 1

for i = 2 to n
 factorial[i] = factorial[i − 1] * i

q = 1 − p
array table[n]

// Precompute the first value:
// Notes: 0! = 1; p = 1; so the
// quotient also is: (n! / n!) = 1;
// thus, the first value is: (1 − p)ⁿ
table[0] = q^n

i = 1
j = n − 1
while i < n
 denom = factorial[i] * factorial[j]
 quotient = factorial[n] / denom
 rest = p^i * q^j

 // Current probability adds to the
 // (sum of) previous ones to get
 // the continuous scale:
 table[i] = table[i − 1] +
 quotient * res
 ++i
 −−j

for i = 0 to n − 1
 splits[i] = table[i]

The table is created using BigDecimal class (so the
pre-calculation process was precise enough) and then
converted to an array of primitive doubles. Then, when the

class is asked to produce a binomial integer, the uniform
real number pseudorandom value is generated, and this
value is searched within the table of splits using a binary
search algorithm. The position found in between the splits
of the table is the generated integer. There are some corner
cases to make quick decisions and to prevent some
overflows, but the core is simply a binary search. This
approach implies meeting one condition: the table must
not be pre-calculating each time the binomial integer is
generated. The class does the pre-calculation only during
the initialisation process or after changing one of the
parameters (or).

The second variant computes the resulting
pseudorandom integer using the Galton board simulation
(see, e.g. [13]). The principle is almost the same as used
by BinomialConvolutionGen by SSJ [12]. The SSJ uses
“the convolution method that generates Bernoulli random
variates and adds them up.” It sounds like a different
approach, but if you look at the two implementations
closely (ours and the SSJ’s), you will find strong
similarities. I believe that this is how you get the same (or
at least similar) algorithm using different thinking. From
the results, it looks like the Galton simulation algorithm
(ours) is slightly faster than the convolution method (SSJ;
the cumulative data shows a difference of about 0.1
microsecond), but this is negligible.

IV. THE TEST OF UNIFORM GENERATORS

All algorithms are based on the use of “third party” (in
the meaning “outside the class” – in fact, it might be
implemented by the same party) pseudorandom generators
(presumably with uniform distribution) used to generate
single “tosses” (trials) that determine the resulting
binomial value. Each implementation came with its own
uniform generator (hence the note about the “third party”),
and we also used the standard Java implementation in the
process. So following generators were considered:

• Apache – Well19937c generator [14] (henceforth
referred to as “ApacheWell”).

• CERN – MT19937 MersenneTwister [15]
(henceforth referred to as “CernMerTwi”).

• SSJ – MRG32k3a combined multiple recursive
generator (CMRG) [16] (henceforth referred to as
“SsjMrg”).

• Standard Java Random class generator [17]. (See
also: [18]; henceforth referred to as
“JavaRandom.”)

We are aware that the speed and quality of a specific
uniform generator affects the results of the binomial
generator, so we tested the speed of all uniform generators
and selected two representatives to compare the speeds of
all binomial distribution algorithms. (Note that all
binomial classes support passing any uniform generator
during the construction; possibly later too.) Table 1
compares the speeds of uniform generators after a hundred
thousand operations. We measured and compared the
performance of three instance methods: the one that
generates the pseudorandom integers (nextInt), doubles
(nextDouble), and longs (nextLong; if the generator
supports it). The tests clearly show that the fastest
generator comes from CERN (referred to as
CernMerTwi). Therefore, the first choice was this
generator. Other generators vary according to methods
producing random numbers of different data types, so we

198979-8-3503-2033-6/22/$31.00 ©2022 IEEE

decided to use the default Java generator as the second
one.

TABLE 1.
COMPARISON OF TIME PERFORMANCE OF FOUR

ALGORITHMS USED IN FOCUSED IMPLEMENTATIONS.

time [ms] nextInt nextDouble nextLong
ApacheWell 0.5158 2.8626 1.9630
CernMerTwi 0.3045 0.5966 0.5201
SsjMrg 1.4774 2.2272 -
JavaRandom 0.8264 2.5311 1.8659

V. THE TESTS OF BINOMIAL GENERATORS

A. The Setup
After that, we started to compare the binomial

algorithms. In the first test (the speed test), we compared
the first variant of our algorithm (the split table variant)
with three implementations enumerated in the beginning
(Apache [10], CERN [11], and SSJ [12]). We will use the
following labels for single algorithms:

• the implementation in Math3 library – Apache
[10]: ApaBin,

• the implementation in Colt library – CERN [11]:
CernBin,

• the implementation in SSJ library [12]: SsjBin,
• and our implementation: OurBin.

The other variant (Galton board simulation) was
compared only to the BinomialConvolutionGen by SSJ
[12]. The labels for the two are as follows:

• the BinomialConvolutionGen (SSJ library)
implementation [12]: SsjCon,

• the Galton board simulation: OurGal.

We arranged all six algorithms in the tables and graph
(below) in the above order. We performed this first test
using two selected uniform generators: CernMerTwi and
JavaRandom. This test is hardware-dependent, so we
performed the measurement on more than one machine.

After the first test, another test was performed:
checking the characters of the distributions produced by
all algorithms. We did that by producing and averaging
the waste numbers of binomial values by all generators.
Then we created a graph to visually compare the character
of all produced binomial distributions. Seeing the data, we
considered this test sufficient to prove that all produced
distributions create the same character of data. We do not
plan to use our algorithm in a safety-critical environment,
so we did not perform any other tests. This test was purely
algorithmic, and thus it was (and is) independent of
hardware, so we ran it only on single hardware (machine).

B. The Tests
Originally, the speed tests were performed on three

machines, but something went wrong with the tests on a
third (oldest and slowest) machine, so the tests made on
that machine were discharged. The results measured on
the two remaining machines are in tables 2 and 3. Table 2
shows the statistical means and average durations of all
binomial generators while producing values in different
magnitudes of powers of tens using the CernMerTwi
generator, and table 3 compares the results while the
JavaRandom generator was used.

The second kind of test is supposed to show that all
algorithms produce the same distribution. We wrote a
simple testing application that was able to execute all
generators a specified number of times (e.g., 1.500) with
selected values of parameters: the probability of success
(e.g.,) and the number of trials (e.g.,

). Then we created the number of

TABLE 2.
THE EXECUTION TIME (IN MILLISECONDS) OF POWERS OF TENS

OPERATIONS MEASURED FOR ALL COMPARED ALGORITHMS USING
THE CERN MERSENNE TWISTER MT19937 [15].

time
[ms]

two runs on machine 1 two runs on machine 2
median average median average median average median average

10ąrepetitions (of generating 10,000 values)
ApaBin 0.0400 0.0419 0.0365 0.0382 0.0293 0.0325 0.0298 0.0399
CernBin 0.0011 0.0016 0.0011 0.0016 0.0008 0.0013 0.0008 0.0016
SsjBin 0.0005 0.0006 0.0005 0.0006 0.0004 0.0005 0.0004 0.0006
OurBin 0.0004 0.0005 0.0004 0.0005 0.0003 0.0004 0.0003 0.0005
SsjCon 0.0025 0.0027 0.0025 0.0027 0.0018 0.0021 0.0018 0.0026
OurGal 0.0024 0.0026 0.0024 0.0026 0.0018 0.0021 0.0018 0.0025

10˛ repetitions (of generating 10,000 values)
ApaBin 0.3807 0.3825 0.3450 0.3469 0.2729 0.2848 0.2737 0.2878
CernBin 0.0104 0.0104 0.0103 0.0104 0.0075 0.0077 0.0076 0.0079
SsjBin 0.0042 0.0042 0.0040 0.0041 0.0029 0.0030 0.0029 0.0030
OurBin 0.0039 0.0040 0.0039 0.0040 0.0028 0.0029 0.0028 0.0030
SsjCon 0.0243 0.0244 0.0241 0.0243 0.0172 0.0178 0.0173 0.0182
OurGal 0.0237 0.0238 0.0236 0.0238 0.0170 0.0178 0.0173 0.0181

10ł repetitions (of generating 10,000 values)
ApaBin 3.8124 3.8266 3.4520 3.4651 2.7529 3.0532 2.7961 3.5228
CernBin 0.1004 0.1008 0.1007 0.1011 0.0740 0.0817 0.0738 0.0934
SsjBin 0.0410 0.0411 0.0412 0.0414 0.0317 0.0353 0.0286 0.0365
OurBin 0.0383 0.0385 0.0371 0.0374 0.0267 0.0297 0.0280 0.0358
SsjCon 0.2432 0.2439 0.2433 0.2441 0.1729 0.1916 0.1729 0.2214
OurGal 0.2358 0.2376 0.2355 0.2372 0.1718 0.1897 0.1730 0.2216

10 repetitions (of generating 10,000 values)
ApaBin 38.2117 38.2524 34.5804 34.6441 28.8365 41.0302 29.3039 43.0858
CernBin 0.9843 0.9860 0.9892 0.9910 0.7640 1.1075 0.7728 1.1258
SsjBin 0.4022 0.4032 0.4080 0.4092 0.2901 0.4282 0.2974 0.4431
OurBin 0.3790 0.3799 0.3681 0.3692 0.2692 0.3969 0.2866 0.4280
SsjCon 2.4347 2.4385 2.4352 2.4398 1.8139 2.5747 1.8589 2.7191
OurGal 2.3664 2.3723 2.3632 2.3694 1.7773 2.5541 1.8591 2.7085

TABLE 3.
THE EXECUTION TIME (IN MILLISECONDS) OF POWERS OF TENS

OPERATIONS MEASURED FOR ALL COMPARED ALGORITHMS USING
THE STANDARD JAVA GENERATOR [17, 18].

time
[ms]

two runs on machine 1 two runs on machine 2
median average median average median average median average

10ą repetitions (of generating 10,000 values)
ApaBin 0.0401 0.0416 0.0400 0.0414 0.0293 0.0324 0.0293 0.0325
CernBin 0.0012 0.0014 0.0012 0.0013 0.0009 0.0010 0.0009 0.0011
SsjBin 0.0006 0.0007 0.0006 0.0007 0.0004 0.0006 0.0004 0.0006
OurBin 0.0005 0.0006 0.0006 0.0006 0.0004 0.0005 0.0004 0.0005
SsjCon 0.0135 0.0138 0.0135 0.0138 0.0097 0.0106 0.0097 0.0106
OurGal 0.0136 0.0138 0.0135 0.0137 0.0098 0.0106 0.0098 0.0106

10˛ repetitions (of generating 10,000 values)
ApaBin 0.3820 0.3841 0.3811 0.3830 0.2712 0.2840 0.2721 0.2846
CernBin 0.0114 0.0115 0.0114 0.0115 0.0080 0.0083 0.0080 0.0083
SsjBin 0.0054 0.0054 0.0055 0.0055 0.0038 0.0040 0.0038 0.0040
OurBin 0.0050 0.0050 0.0051 0.0051 0.0035 0.0036 0.0035 0.0037
SsjCon 0.1342 0.1349 0.1342 0.1349 0.0945 0.0990 0.0967 0.0997
OurGal 0.1352 0.1360 0.1343 0.1349 0.0953 0.0998 0.0974 0.1005

10ł repetitions (of generating 10,000 values)
ApaBin 3.8246 3.8383 3.8161 3.8300 2.7046 2.8165 2.7362 3.3697
CernBin 0.1126 0.1130 0.1113 0.1116 0.0780 0.0807 0.0791 0.0975
SsjBin 0.0545 0.0547 0.0551 0.0553 0.0374 0.0388 0.0387 0.0481
OurBin 0.0501 0.0503 0.0497 0.0499 0.0341 0.0353 0.0352 0.0438
SsjCon 1.3435 1.3475 1.3433 1.3470 0.9450 0.9815 0.9451 1.1819
OurGal 1.3540 1.3577 1.3449 1.3486 0.9525 0.9903 0.9527 1.1909

10 repetitions (of generating 10,000 values)
ApaBin 38.3289 38.3759 38.2248 38.3050 28.5546 38.7209 29.1498 42.4460
CernBin 1.1093 1.1113 1.0971 1.0997 0.7938 1.1037 0.8354 1.2151
SsjBin 0.5259 0.5272 0.5400 0.5426 0.3797 0.5319 0.4014 0.5914
OurBin 0.4856 0.4869 0.4744 0.4763 0.3452 0.4843 0.3613 0.5327
SsjCon 13.4564 13.4704 13.4564 13.4771 9.9055 13.5042 10.0366 14.8562
OurGal 13.5635 13.5775 13.4773 13.4986 10.0234 13.6301 10.2116 15.0113

199979-8-3503-2033-6/22/$31.00 ©2022 IEEE

“batches” of those runs and calculated the three average
values of the data: overall average, an average of upper
bound, and an average of lower bound; to smooth the
curves and get the variations of the data. These tests
showed that all algorithms positively produce the same
distribution. The application was also able to draw and
export graphs of all kinds. Examples of the runs are in
graph 1.

VI. THE POISSON APPROXIMATION

The initial motivation to implement our algorithm went
through an attempt to get around implementing the
Poisson distribution algorithm by implementing the
simple version of the Galton board simulation. It produces
binomial distribution convertible to an approximation of a
Poisson distribution. Eventually, we created the table of
splits algorithm that computes the table using a more
complex implementation, but that does not mean that the
original idea cannot be applied anymore.

According to [1, 2]: The binomial distribution
converges towards the Poisson distribution with mean as
the number of trials goes to infinity () while the
product remains fixed, or at least p tends to zero
(). Therefore, the Poisson distribution with
parameter can be used as an approximation to

 of the binomial distribution if is sufficiently
large and is sufficiently small. According to the two
rules of thumb, this approximation is good if (for
example) and , or if and

.

VII. CONCLUSION

After performing all the tests and evaluating the
measured results, we can conclude that our solution is
applicable in practice. Our approach is faster than selected
algorithms (if you do not force the instances to
re-initialize their tables too often) and produces the
distribution of the same quality. The first next step is to
include the algorithm in the existing framework [19, 20]
and then use it in our simulation system that is currently in
development. The simulation system is developed with the
intention to use it in the educational process (as a kind of
educational material) as we do regularly with other
systems and software [21, 22, 23] at our department. Still,
any other use is not excluded either.

ACKNOWLEDGEMENT

The work has been supported by the Cultural and
Educational Grant Agency of the Ministry of Education,
Science, Research and Sport of the Slovak Republic
(KEGA) and the contribution was elaborated as part of the
following KEGA projects: KEGA 013TTU-4/2021
entitled Interactive animation and simulation models for
deep learning and KEGA 012TTU-4/2021 entitled
Integration of the usage of distance learning processes
and the creation of electronic teaching materials into the
education of future teachers.

REFERENCES
[1] Binomial Distribution. From: Wolfram MathWorld. Available at:

https://mathworld.wolfram.com/BinomialDistribution.html . Last
accessed: 2022-09-16.

[2] (2012). Binomial distribution. From: Wikidoc by user WikiBot
based on work by Brian Blank. Available at: https://www.
wikidoc.org/index.php/Binomial_distribution . Last accessed:
2022-09-16.

[3] Horváth, Roman – Fialová, Jana. (2020). The Creation of
Simulation with an Algorithm Optimisation in Java for the
Teaching Process. In 18th IEEE International Conference on
Emerging eLearning Technologies and Applications (ICETA) :
Information and communication technologies in learning. Košice
(Slovak Republic), Denver (USA) : Institute of Electrical and
Electronics Engineers. https://doi.org/10.1109/ICETA51985.
2020.9379150 . ISBN 978-0-7381-2366-0, pp. 160–166.

[4] Horváth, Roman. (2018). The Past Seven Years of Development
of the Framework for Teaching Programming and the Students’
Results. In ICETA 2018 : 16th IEEE International Conference on
Emerging eLearning Technologies and Applications :
proceedings. New Jersey (USA) : Institute of Electrical and
Electronics Engineers. ISBN 978-1-5386-7912-8, pp. 185–189.

[5] Rokhmawati, Retno Indah – Az-zahra, Hanifah Muslimah. (2019).
Identifying Students’ Mental Model for Java Programming
Subject. In Proceedings of the 2019 3rd International Conference
on Education and Multimedia Technology (ICEMT 2019). New
York, NY (USA) : Association for Computing Machinery,
pp. 165–169. https://doi.org/10.1145/3345120.3345146 .

[6] Beňo, Pavel – Havan, Patrik – Šprinková, Sandra. (2020).
Structured, Analytical and Critical Thinking in the Educational
Process of Future Teachers. In Acta Educationis Generalis.
Dubnica nad Váhom (Slovak Republic) : DTI University. https://
doi.org/10.2478/atd-2020-0024 . ISSN 2585-741X. ISSN (online)
2585-7444. Volume 10, Issue 3, pp. 111–118.

[7] LaMorte, Wayne W. (2016). The Binomial Distribution : A
Probability Model for a Discrete Outcome. Boston University
School of Public Health. Available at: https://sphweb.bumc.bu.
edu/otlt/mph-modules/bs/bs704_probability/bs704_probability7
.html . Last accessed: 2022-09-16.

[8] Frost, Jim. (2022). Binomial Distribution : Uses, Calculator &
Formula – Statistics by Jim. Available at: https://statisticsbyjim

Graph 1. Example of the runs using and (left), (middle), and (right). (Single run is computed from 1.000

distributions, each created by generating 1.500 values.)

200979-8-3503-2033-6/22/$31.00 ©2022 IEEE

.com/probability/binomial-distribution/ . Last accessed:
2022-09-16.

[9] Glen, Stephanie. Binomial Distribution : Formula, What it is, How
to use it. StatisticsHowTo.com : Elementary Statistics for the rest
of us! Available at: https://www.statisticshowto.com/probability-
and-statistics/binomial-theorem/binomial-distribution-formula/ .
Last accessed: 2022-09-16.

[10] (2016). Math – Commons Math : The Apache Commons
Mathematics Library. The Apache Software Foundation.
Available at: https://commons.apache.org/proper/commons-math/
index.html . Last accessed: 2022-09-16.

[11] (2022). Colt – CERN Open Source Libraries for High
Performance Scientific and Technical Computing in Java.
CERN – European Organization for Nuclear Research. Available
at: https://dst.lbl.gov/ACSSoftware/colt/, https://github.com/
jenetics/colt . Last accessed: 2022-09-16.

[12] L’Ecuyer, Pierre. (2018). Stochastic Simulation in Java : SSJ. SSJ
User’s Guide and Releases. Aisenstadt, Université de Montréal,
Québec, Canada. Available at: http://umontreal-simul.github.io/
ssj/docs/master/, https://github.com/umontreal-simul/ssj/releases .
Last accessed: 2022-09-16.

[13] Galton Board. From: Four Pines Publishing, Inc. Available at:
https://galtonboard.com/ . Last accessed: 2022-09-16.

[14] Panneton, François – L’Ecuyer, Pierre – Matsumoto, Makoto.
(2006). Improved Long-Period Generators Based on Linear
Recurrences Modulo 2. ACM Transactions on Mathematical
Software, volume 32, issue 1. Available at: http://www.iro.
umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf . Last accessed:
2022-09-16.

[15] Matsumoto, Makoto – Nishimura, Takuji. (1998). Mersenne
Twister : A 623-Dimensionally Equidistributed Uniform Pseudo-
Random Number Generator. ACM Transactions on Modeling and
Computer Simulation, volume 8, issue 1, pp. 3–30. Available at:
https://dl.acm.org/doi/10.1145/272991.272995 . Last accessed:

2022-09-16.
[16] L’Ecuyer, Pierre. (1999). Good Parameters and Implementations

for Combined Multiple Recursive Random Number Generators.
Operations Research, volume 47, issue 1, pp. 159–164.

[17] Knuth, Donald. (1998). The Art of Computer Programming.
Stanford University, volume 2, section 3.2.1. Available at: https://
doc.lagout.org/science/0_Computer%20Science/2_Algorithms/
The%20Art%20of%20Computer%20Programming/%20%28vol.
%202_%20Seminumerical%20Algorithms%29%20%283rd%20
ed.%29%20%5BKnuth%201997-11-14%5D.pdf, https://serious
computerist.atariverse.com/media/pdf/book/Art%20of%20
Computer%20Programming%20-%20Volume%202%20
(Seminumerical%20Algorithms).pdf . Last accessed: 2022-09-16.

[18] Random (Java Platform SE 8). Java™ Platform Standard Ed. 8
Documentation. 1993, 2022, Oracle and/or its affiliates. Available
at: https://docs.oracle.com/javase/8/docs/api/java/util/Random
.html . Last accessed: 2022-09-16.

[19] Horváth, Roman. (2022). GRobot programming framework
documentation. Available at: https://pdfweb.truni.sk/horvath/
GRobot/ . Last accessed: 2022-09-16.

[20] Horváth, Roman. (2022). GitHub – raubirius/GRobot : Contains
the files of the Programming framework GRobot. Available at:
https://github.com/raubirius/GRobot . Last accessed: 2022-09-16.

[21] Pokorný, Milan – Holý, Dušan. (2018). Interactive elements for
teaching addition and subtraction. In EME2018 Proceedings :
Perspectives of primary mathematics education : 23rd scientific
conference with international participation Elementary
Mathematics Education. Olomouc (Czech Republic) : Palacký
University Olomouc. ISBN 978-80-905281-7-8, pp. 105–106.

[22] Štrbo, Milan. (2020). AI-based Smart Teaching Process During
the COVID-19 Pandemic. In Proceedings of the Third
International Conference on Intelligent Sustainable Systems
[ICISS 2020]. Piscataway (USA) : Institute of Electrical and
Electronics Engineers. ISBN 978-1-7281-7089-3, pp. 402–406.

[23] Pokorný, Milan. (2021). Interactive Applications as an Additional
Study Material for Teaching Mathematics at Secondary School
During the COVID-19 Pandemics. In UNINFOS 2021. Žilina
(Slovak Republic) : University of Žilina. ISBN 978-80-554-1828-
5, pp. 34–38.

201979-8-3503-2033-6/22/$31.00 ©2022 IEEE

