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1. Introduction
Phytosanitary field technical staff often face the risk 
of crop damage, which has increased recently with the 
introduction of new (sometimes exotic) species to plant 
material. Correct identification of the targeted pest insects 
is essential for phytosanitary management. Mistakes at 
this stage can cause project delays or failure. 

Like in any insect group, thrips (Thysanoptera) 
identification includes a wide range of alternatives and 
specific methods (Mehle and Trdan, 2012), from printed 
dichotomous taxonomic keys (e.g., Schliephake and Klimt, 
1979; zur Strassen, 2003 for European species) to more user-
friendly pictorials (Mound and Kibby, 1998) and complex 
multiaccess keys (Moritz et al., 2001). A computerized 
knowledge base, using HyperWriter (NTERGAID, 
Fairfield, CT, USA), was developed to enable vegetable 

producers, field technical staff, extension personnel, and 
other nonentomologists to identify the species of thrips on 
economically important thrips-infested vegetable crops 
(Frantz and Mellinger, 1997). For 15 years, Lucid, a digital 
matrix key system, has been evolving to keep pace with 
technological advances in software (Schuetz et al., 2010; 
Taylor, 2010). Genetic markers have also proven to be a 
powerful tool in the identification of thrips pest species, 
including their immature stages (Moritz et al., 2000; 
Brunner et al., 2002; Toda and Komazaki, 2002; Rugman-
Jones et al., 2006). The interactive electronic key created 
by Moritz et al. (2004) combines both morphological and 
molecular information. 

The latest review comparing “traditional” and 
“modern” methods in thrips identification (Mehle and 
Trdan, 2012) summarized all of the alternatives mentioned 
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above, even gently annotating the power of morphometrics 
in encompassing size and shape of a biological object. 
All species exhibit morphological variation, induced 
both genetically and by the environment as a phenotypic 
plasticity (Ananthakrishnan, 2005), which can serve as 
a buffering mechanism against environmental changes. 
Subsequently, many species have adults so varied in 
structure that large and small individuals may not be 
recognizable as being the same species without collateral 
biological information (Mound, 2005) or brand new 
identification keys (if available). However, our previous 
studies (Fedor et al., 2008, 2009; Kucharczyk and 
Kucharczyk, 2009; Kucharczyk et al., 2012) indeed 
underline morphometric (both quantitative and 
qualitative) variables as an autonomous tool for reliable 
Thysanoptera identification, in the sense of either basic 
multivariable analyses (e.g., principal component analysis) 
or even the phenomenon of more complex artificial neural 
networks (ANNs). Variability, in fact, may sometimes 
appear rather subjective, sometimes even objectively 
proven by basic statistical tools analyzing data within 
their interval range. However, characters, although widely 
dispersed, together often form a unique set with original 
patterns hardly recognizable within a simple statistical 
approach. ANNs, when applied for a set of carefully 
selected morphometric variables, may provide a solution 
to determining a species (Vaňhara et al., 2007; Muráriková 
et al., 2011). Of the previously analyzed characters (Fedor 
et al., 2008, 2009), they were all (head width and length, 
eye length, ovipositor length, antenna length, and distance 
between an anterior and posterior pair of ocelli) used in 
many traditional keys (e.g., Schliephake and Klimt, 1979; 
zur Strassen, 2003 for European species), but, however, 
only as additional data. Artificially intelligent systems, at 
least in specific cases, offer a way to evaluate them as an 
autonomous set of data.

Undoubtedly, in the recent decades, there has been 
a growing interest in ANN systems, which, in fact, have 
many forms and versions; however, in general they have 
2 important factors in common: ability to learn from 
examples and to generalize the observed patterns (Weeks 
and Gaston, 1997; Gaston and O’Neill, 2004). Although 
the ANN systems correspond to the theory of how real 
biological neurons (neuronal networks) process received 
information and there are many elementary similarities 
between the human brain and artificial intelligence (e.g., 
learning from experience and storing information as 
patterns), the synaptic connections in artificial networks 
analyze both positive and negative values and are often 
implemented to evaluate data out of the neurobiological 
background (Freeman and Skapura, 1992; Ripley, 1993; 
Haykin, 1994; Haralabous and Georgakarakos, 1996). 

ANN models are flexible function approximators to 
describe nonlinear systems (Zhang and Barrion, 2006), 

make no a priori assumptions on the type or statistical 
distribution of data, and, thus, can be used for pattern 
recognition on practically any kind of multivariate data 
sets (Do et al., 1999; Moore and Miller, 2002; Clark, 2003; 
Kavdır, 2004; Marini et al., 2004; Aldrich et al., 2007; 
Vaňhara et al., 2007; Fedor et al., 2008, 2009; Esteban et al., 
2009; Muráriková et al., 2011; Bilgili, 2011; Tohidi et al., 
2012). Their use now spans all fields of science, including 
a wide variety of applied branches, such as pest control in 
agriculture and forestry.

Being encouraged by the previous research, which 
has undisputedly built up a theoretical (mathematical) 
background for the opportunity of ANN insect species 
identification (Vaňhara et al., 2007; Fedor et al., 2008, 
2009; Muráriková et al., 2011), we describe a methodical 
concept and the power of artificially intelligent systems 
in discriminating 2 morphologically similar Thrips 
species as a relatively simple real model case for applied 
entomology (pest identification). This is, in fact, the first 
time that artificial intelligence has been applied for 2 very 
similar and often hardly recognizable (at least by technical 
staff) pest species with overlapping morphometric 
characters and limited material. We present the power of 
morphometrics as an autonomous set of information for 
reliable species discrimination with applied proposals in 
the final computational products (semiautomatic online 
identification system).

As an applied model, discriminability of Thrips 
sambuci Heeger, 1854 and T. fuscipennis Haliday, 1836 
(Thysanoptera: Thripinae) has been studied. Thrips 
Linnaeus, 1758 is the most species-rich genus of 
Thysanoptera with more than 250 described species 
worldwide (Mound, 2010). There are consequentially many 
identification systems available (e.g., Nakahara, 1994; zur 
Strassen, 2003; Mound and Masumoto, 2005; Mound and 
Azidah, 2009; Mound, 2010; Vierbergen et al., 2010). First 
and second larval instars of Thripidae differ in the number 
of setae on the pronotum (6 and 7 setae). Generally, they 
are easy to recognize by 1 (first instar larva) or 3 (second 
instar larva) pairs of setae on abdominal sternites IV–VIII 
and 3–4 (first instar larva) or 4–5 (second instar larva) 
pairs of setae on abdominal segment IX posteromarginally 
(Kucharczyk, 2010; Vierbergen et al., 2010). 

However, in applied phytosanitary pest monitoring, 
problems with prompt and clear species identification may 
often occur, for instance, if visible differences between 
similar species are none or minute. Although the ongoing 
development of molecular technology and computational 
strategy offers tools of ever-increasing speed, there are 
still several species that are more difficult to determine. 
Within Thripinae, for instance, there are sometimes 
practical problems and confusion in distinguishing 
between T. fuscipennis and T. sambuci adults, which is in 
contradiction with their larvae, who are morphologically 
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significantly different and thus easy to identify 
(Kucharczyk, 2010; Vierbergen et al., 2010; Kucharczyk et 
al., 2012). While European Thrips sambuci prefers shrubs 
Sambucus nigra L. and S. racemosa L., the very similar 
T. fuscipennis (introduced to Asia and North America) 
is a pest in temperate greenhouses (Jacobson, 1995) 
predominantly causing damage to cucumber (Cucumis 
sativus L.) foliage (silvering, bronzing) or flowers. Even 
ornamentals, such as roses (Rosa spp.), may have leaves 
silvered and petals covered by brown patches under their 
infestation (Henneberry et al., 1961). In Central Europe, 
both populations often occur in parallel, particularly after 
T. sambuci infiltrates farmland when overpopulated in 
ecotonal shrub stands.

Unfortunately, although being different 
morphologically (zur Strassen, 2003; Kucharczyk et al., 
2012), especially in chaetotaxy and color of antennal 
segments, the identification of many specimens that 
may have overlapping characters may be sometimes 
confusing, especially for technical staff with less 
taxonomic experience; if, for instance, a sample is 
extracted from sticky traps (damaged material); or if 
mounted material of poor quality is available for an 
expert. Moreover, although the traditional morphological 
methods for the identification of thrips pests have been 
recently accompanied by DNA (Brunner et al., 2002) 
or protein analysis (e.g., Toda and Komazaki, 2002) to 
make the control more reliable and dynamic (Mehle and 
Trdan, 2012), the BLAST (FN546130.1 and FN546131.1, 
FN546127.1 and FN546129.1) discrimination of Thrips 
sambuci and T. fuscipennis, when financially accessible, 
still remains limited due to the selected mitochondrial 
gene sequences and requires revision in GenBank. For 
such cases, ANN systems may be usefully applied as an 
occasional and specific alternative.

2. Materials and methods
2.1. Materials
In total, 175 Thrips specimens of 2 species, T. fuscipennis and 
T. sambuci, were collected for their detailed morphometric 
revision within statistical and ANN analyses or used for 
verification of the online discrimination system. The 
computational set (matrix) consisted of 93 specimens of 
both evaluated species, T. fuscipennis (27 females and 15 
males) and Thrips sambuci (36 females and 15 males), and 
the verification set of 82 more specimens that originated 
from the larger Central and East European area (Poland, 
Slovakia, Austria, and the Czech Republic) to record 
wider intraspecific morphological variability and to prove 
the reliability of the system. They were sampled mainly 
from farmland on Pisum sativum monocultures (T. 
fuscipennis) with Sambucus nigra solitaires (T. sambuci). 
In order to ensure a more reliable database, most of the 

T. sambuci specimens analyzed in Poland were kept for 
the duration of their life cycle from eggs to adults (larvae 
are easily determined) in Fytotron plant growth chambers 
(photophase: 16 h at 24 °C, scotophase: 8 h at 10 °C, 
on Sambucus nigra as the host plant) in the laboratory 
(Department of Zoology Laboratory of Maria Curie-
Sklodowska University, Lublin, Poland). The material 
from Slovakia, Austria, and the Czech Republic comes 
from older permanent slides stored in our collections 
(Comenius University, Bratislava, Slovakia), sometimes 
with no additional information on host plants. Standard 
preparatory technique was used for mounting; specimens 
were collected into AGA (a mixture of ethyl alcohol, 
glycerin, and acetic acid), macerated in warm 10% KOH, 
dehydrated in alcohol and clove oil, and mounted on slides 
in Canada balsam. The material was identified by P Fedor 
and H Kucharczyk and is deposited in their collections.
2.2. Selection of characters
We defined and recorded a total of 17 characters (Table 
1, Figure 1), measured for each specimen of both species 
(Thrips sambuci and T. fuscipennis) collected. Sixteen of 
them may be defined as quantitative morphometric (15) 
or qualitative (1 - number of campaniform sensilla on 
mesonotum) traits related to different parts of the body, 
including the head (1–7), thorax (8–13), and abdomen 
(14–16). Most of the selected characters are commonly 
used for thrips identification (e.g., zur Strassen, 2003). The 
17th variable indicates sex. The morphometric characters 
were measured quantitatively as linear distances on 
digital images taken from slide-mounted specimens by 
H Kucharczyk (microscope OLYMPUS BX 61 and image 
analyzer software sellSens Dimension Ver. 2010, Poland) 
and P Fedor (microscope LEICA M 205 C and image 
analyzer software LUCIA net, Laboratory Imaging Ltd., 
Slovakia and Czech Republic). Both species, like many 
other thrips, exhibit a  pronounced sexual dimorphism 
(zur Strassen, 2003). The data corresponding to missing 
structures in males (ovipositor) and females (area porosae 
on sternum V–VI) were included in the analysis and 
entered into the data matrix as empty cells.
2.3. Software and computational strategy
ANN computation was performed using the TRAJAN 
Neural Network Simulator, Release 3.0 D. (TRAJAN 
Software Ltd. 1996–1998, UK) and the program 
STATISTICA 6 (StatSoft, Inc., Tulsa, OK, USA). All 
computations were performed on a standard PC computer 
with operating system Microsoft Windows Professional 
XP 2003 and/or MW 2010.

All the statistical methods applied to evaluate the set of 
morphometric data related to T. sambuci and T. fuscipennis 
are commonly (perhaps except for the ANN) used in 
taxonomy (e.g., Chiapella, 2000; Apuan et al., 2010), each, 
obviously, with its own specific approach. Therefore, there 
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is no need for their detailed description. In this paper, 
the evaluation includes application of factor analysis, 
correlation analysis, principal component analysis, linear 
discriminant analysis, and ANN analysis.

The ANN computational strategy applied in this study 
was introduced in our previous studies (Vaňhara et al., 
2007; Fedor et al., 2008). Data were randomly divided 
into a learning (training) set, a verification set, and a test 
set. Each set consisted of a  number of samples (thrips 
specimens) characterized by input variables (characters) 
and identified as belonging to a species (output). 
Preliminary experiments suggested that the multilayer 
perceptrons (MLPs) would be the most efficient tool for 
this purpose. MLP is generally one of the most commonly 
used types of ANN and can model functions of almost 
arbitrary complexity. Its architecture is conventionally 
constructed with 3 or more feed-forward layers, i.e. input, 
output, and 1 or more hidden layers. Each layer might have 
a different number of nodes. 

The learning or training process of MLP consists of 
searching for such values of wij weights to minimize the 
root mean square (RMS) value:

where yij is the element of the matrix (N × M) for the 
training set, outij is the element of the output matrix (N × 
M) of the neural network, N is the number of variables in 
the pattern, and M is the number of samples. By running 
the data on specimens from the training set, including 
the output variable (the identification), through the 
network and comparing the actual output generated with 
the desired or target outputs, the network automatically 
adjusts the weights and thresholds in order to minimize 
the overall error. 

The training of a MLP network can be executed by 
different algorithms. We used back propagation, which 

Table 1. A statistical survey of the characters applied for the analysis (length in µm, uncertainty 
0.03 µm; SD - standard deviation, V - variable; * - mean and standard deviation irrelevant). 1 - head 
width; 2 - head length (dorsal side); 3 - head length (ventral side, including mouthcone); 4 - eye 
length; 5 - antennal segment V length; 6 - antennal segment VI length; 7 - distance between an 
anterior and posterior pair of ocelli; 8 - distance between CS and metanotum; 9 - distance between 
D1 and metanotum; 10 - length of posteroangular seta interna; 11 - length of posteroangular 
seta externa; 12 - number of CS on mesonotum; 13 - distance between setae D1 and fore edge on 
metanotum; 14 - ovipositor length; 15 - width of area porosae on sternum V; 16 - width of area 
porosae on sternum VI; and 17 - sex.

V. T. fuscipennis male T. fuscipennis female T. sambuci male T. sambuci female

Mean SD Mean SD Mean SD Mean SD

1 126.33 14.33 144.07 13.23 126.00 4.71 150.42 4.41
2 89.00 8.49 95.00 6.50 86.33 7.67 103.47 6.53
3 164.67 12.60 192.78 13.61 184.00 4.31 215.28 9.48
4 53.67 4.81 58.61 2.89 55.33 1.29 59.72 2.66
5 32.00 2.15 36.02 2.52 33.50 1.84 37.36 2.23
6 50.17 2.75 51.57 2.10 52.00 2.15 55.07 1.84
7 14.17 1.54 16.20 1.75 13.17 1.48 14.65 1.81
8 11.92 2.73 18.80 4.28 9.89 8.56 27.01 9.38
9 10.00 1.64 13.98 2.22 13.67 1.86 22.08 3.13
10 43.67 4.10 56.57 3.74 52.17 2.48 67.36 5.51
11 38.83 3.39 51.48 4.40 44.33 3.34 60.00 4.93
12 * * * * * * * *
13 13.16 3.06 14.44 3.35 17.97 2.52 20.74 3.95
14 * * 205.00 8.32 * * 201.25 6.25
15 43.83 5.58 * * 35.17 5.04 * *
16 37.83 6.67 * * 24.33 6.37 * *
17 * * * * * * * *
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is the best-known one and has relatively low memory 
requirements (Fausett, 1994; Patterson, 1996). We ran the 
training algorithm several times with each configuration 
for 5000 to 10,000 iterations (epochs) to ensure a proper 
convergence to RMS minimum and to avoid being stuck in 
a local minimum. After obtaining the optimal architecture 
and minimal RMS, a number of randomly selected 
specimens from the learning set, as well as individuals 

from different populations, were excluded to form the 
verification set. The verification is a test of prediction 
power of the model. 

ANN computation also comprises pre- and 
postprocessing stages. Preprocessing techniques used 
in our study included data standardization (scaling) 
and conversion of nominal input variables to numeric 
values (done automatically by TRAJAN software). 

Figure 1. Morphological characters applied for Thrips identification (explanation 
in Table 1). a) head and thorax; b) antenna; c) ocelli; d) ovipositor; e) abdomen 
ventrally (a–d in T. sambuci; e in T. fuscipennis).
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Similarly, the output activation scores were transformed 
by postprocessing into the name of thrips species. The 
classification by ANN is performed by checking output 
unit activation levels against 2 thresholds, the accept 
threshold and the reject threshold. To simply assign the 
classification to the species corresponding to the winning 
unit, irrespective of the settings of other units, we set the 
accept threshold to zero and ignored the reject threshold.

Following the trained neural network architecture, the 
online web application for semiautomated discrimination 
of both species, using PHP programming language, was 
developed and based on extraction of the TRAJAN net 
weights and the activation function. 

3. Results 
3.1. Basic statistical data analysis
Statistical analysis on 17 characters, measured or determined 
for each Thrips fuscipennis and T. sambuci specimen (Table 
1), including 15 quantitative morphometric variables on 
different parts of their bodies, was performed to elucidate 

morphological plasticity, detect eventual outliers, and 
visualize differences between the studied taxa. 

Basic evaluation of both species compared graphically 
(Figure 2), including their character average values as well 
as standard deviations (Table 1), calculated separately 
for males and females, hints at their high intraspecific 
biological variability, while interspecifically most of their 
average values appear too similar to distinguish the species 
reliably.

The number of campaniform sensilla (CS) on the 
mesonotum, 2 (and sporadically 1) in T. fuscipennis and 
a lack of them in T. sambuci, is the characteristic that 
differentiates these species to the highest degree, though 
with several exceptions (0 CS in T. fuscipennis and 1 CS in 
T. sambuci). Additionally, the measured setae are shorter 
in specimens of the former species. Males of the latter are 
characterized by narrower area porosae on abdominal 
sternites V and VI and very often lack of them on sternite 
VII. Moreover, the analysis below declares eye length, 
distance between ocelli, and length of antennal segments 
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Figure 2a. Graphical visualization of characters 1–9. Axis x: 1–42 Thrips fuscipennis; 43–93 T. sambuci (length in µm).
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as the characteristics with low significance in recognizing 
these species. Generally, no single character seems to be 
used for reliable identification.

Some of the characters (e.g., head width), despite 
their similar averages in both species (126.33 µm in T. 
fuscipennis male and 126.00 µm in T. sambuci male), 
significantly differ in their standard deviations (14.33 
and 4.71), thus indicating a different degree of specific 
morphological plasticity. Generally, higher intraspecific 
variability refers to T. fuscipennis, for both females and 
males (Table 1), although some variables appear very 
similar in their standard deviations (e.g., head length and 
distance between anterior and posterior ocelli).
3.2. Correlation analysis
Correlation analysis, which refers to statistical relationships 
involving dependence, indicates a high correlation among 
the characters measured for T. sambuci (Table 2) and T. 
fuscipennis separately. The only exception corresponds 
with the distance between the posterior and anterior 
ocelli (insignificant correlation). The correlation analysis, 
calculated for both species simultaneously, has generalized 

the relationships among all the measured characters 
and emphasized a high degree of interactions between 
some of the characters, such as 15 and 16 (width of area 
porosae on sternum V and VI) or 10 and 11 (length of 
posteroangular seta interna and length of posteroangular 
seta externa), which undisputedly leads to a possible 
reduction in number of parallel variables. Final reduction 
in number of measured characters is required to speed up 
the identification process.
3.3. Factor analysis
The number of nonzero eigenvalues, estimating the 
number of linearly independent rows or columns, refers to 
the number of main sources of variability. This basic factor 
analysis (Table 3), which is to describe variability among 
observed factors, indicates that the first 2 eigenvalues are 
higher than 1 (those under 1 should usually be normally 
neglected), subsequently underlining the possible 
discriminability of both studied species, despite the similar 
values of their morphometric characters. 

The value of rank equaling 2 (Figure 3) can be 
explained by the main variability among the characters 
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measured for both species, T. fuscipennis as well as T. 
sambuci. Surprisingly, despite high variability in the data 
set, the factor analysis clearly detects the main sources 
of variability evolving from the existence of 2 different 
species, as actually demonstrated in Figure 4, where the 
evaluation operates with females only to eliminate the role 
of sex in data distribution. Moreover, the same results can 
be obtained for males.

3.4. Principal component and linear discriminant 
analyses
To follow the trends within the data matrix under the new 
dimension, principal component analysis (PCA), using the 
orthogonal transformation to convert observations into a 
set of principal components (PCs), was applied as projected 
between PC1 vs. PC2, PC1 vs. PC3, and PC2 vs. PC3 (Figure 
5–7). Outcomes of this analysis prove the existence of 2 

Table 2. Correlation among the measured characters. V - variable; 1 - head width; 2 - head length (dorsal side); 3 - head length (ventral 
side, including mouthcone); 4 - eye length; 5 - antennal segment V length; 6 - antennal segment VI length; 7 - distance between an 
anterior and posterior pair of ocelli; 8 - distance between CS and metanotum; 9 - distance between D1 and metanotum; 10 - length of 
posteroangular seta interna; 11 - length of posteroangular seta externa; 12 - number of CS on mesonotum; 13 - distance between setae 
D1 and fore edge on metanotum; 14 - ovipositor length; 15 - width of area porosae on sternum V; 16 - width of area porosae on sternum 
VI; and 17 - sex.

V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1.00 0.62 0.77 0.55 0.47 0.34 0.37 0.50 0.53 0.55 0.57 –0.16 0.47 0.72 –0.68 –0.66 0.71
2 0.62 1.00 0.53 0.48 0.47 0.41 0.38 0.52 0.53 0.52 0.56 –0.21 0.39 0.59 –0.55 –0.53 0.59
3 0.77 0.53 1.00 0.55 0.67 0.64 0.14 0.56 0.81 0.74 0.73 –0.45 0.67 0.69 –0.71 –0.71 0.70
4 0.55 0.48 0.55 1.00 0.44 0.18 0.27 0.36 0.52 0.55 0.52 –0.19 0.26 0.59 –0.61 –0.60 0.59
5 0.47 0.47 0.67 0.44 1.00 0.56 0.16 0.48 0.59 0.59 0.64 –0.25 0.37 0.63 –0.63 –0.63 0.63
6 0.34 0.41 0.64 0.18 0.56 1.00 –0.07 0.45 0.63 0.54 0.55 –0.45 0.53 0.41 –0.40 –0.43 0.41
7 0.37 0.38 0.14 0.27 0.16 –0.07 1.00 0.14 0.01 0.13 0.20 0.24 –0.04 0.40 –0.37 –0.33 0.39
8 0.50 0.52 0.56 0.36 0.48 0.45 0.14 1.00 0.52 0.54 0.58 –0.14 0.38 0.59 –0.57 –0.53 0.60
9 0.53 0.53 0.81 0.52 0.59 0.63 0.01 0.52 1.00 0.75 0.77 –0.55 0.69 0.59 –0.62 –0.62 0.60
10 0.55 0.52 0.74 0.55 0.59 0.54 0.13 0.54 0.75 1.00 0.88 –0.56 0.64 0.72 –0.75 –0.75 0.72
11 0.57 0.56 0.73 0.52 0.64 0.55 0.20 0.58 0.77 0.88 1.00 –0.44 0.63 0.76 –0.78 –0.77 0.77
12 –0.16 –0.21 –0.45 –0.19 –0.25 –0.45 0.24 –0.14 –0.55 –0.56 –0.44 1.00 –0.59 –0.10 0.19 0.26 –0.11
13 0.47 0.39 0.67 0.26 0.37 0.53 –0.04 0.38 0.69 0.64 0.63 –0.59 1.00 0.30 –0.32 –0.35 0.30
14 0.72 0.59 0.69 0.59 0.63 0.41 0.40 0.59 0.59 0.72 0.76 –0.10 0.30 1.00 –0.98 –0.94 1.00
15 –0.68 –0.55 –0.71 –0.61 –0.63 –0.40 –0.37 –0.57 –0.62 –0.75 –0.78 0.19 –0.32 –0.98 1.00 0.97 –0.98
16 –0.66 –0.53 –0.71 –0.60 –0.63 –0.43 –0.33 –0.53 –0.62 –0.75 –0.77 0.26 –0.35 –0.94 0.97 1.00 –0.94
17 0.71 0.59 0.70 0.59 0.63 0.41 0.39 0.60 0.60 0.72 0.77 –0.11 0.30 1.00 –0.98 –0.94 1.00

Table 3. Eigenvalue analysis of morphometric data for both 
species.

Eigenvalue
(EV)

Total variance
(%)

Cumulative
EV

Cumulative
variance (%)

9.036 56.477 9.036 56.477
1.960 12.247 10.996 68.725
0.887 5.543 11.883 74.267
0.796 4.977 12.679 79.244
0.616 3.848 13.295 83.092
0.560 3.502 13.855 86.594
0.524 3.276 14.379 89.870
0.417 2.606 14.796 92.476
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Figure 3. Plot of eigenvalues vs. number of eigenvalues factors.
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separate species, T. fuscipennis and T. sambuci, when all the 
specimens could be clearly distinguished, obviously with 
2 distinct subgroups for each species, determined by sex. 
However, these subgroups are significantly less dispersed 
than the clusters concerning both species generally.

The same conclusion appears when applying linear 
discriminant analysis, which finds linear combinations 
of the variables measured. All the analyzed characters 
determine the species (Figure 8), with a strong impact of 
sex.
3.5. ANN analysis
Assuming a 3-layer ANN architecture and the RMS 
error function as determining the number of nodes in 
the hidden layer, the proposed model is visualized in 
Figure 9. The optimal architecture (17, n, 1) consists of 
16 morphological characters plus sex as inputs, n number 
of nodes in the hidden layer, and 1 output depicted as 2 
species (T. sambuci and T. fuscipennis). Consequently, 
100% classification has been proven within the training 

process. Using cross-validation, the verification step 
appears successful when 1 to 10 specimens excluded from 
the database were tested. As a conclusion, the optimal ANN 
architecture, established as (17, 4, 1), is undisputedly able 
to distinguish both species reliably despite high variability 
of morphometric characters analyzed. 

ANNs work in the system of hidden layers, 
which enables operations often unusual for standard 
identification tools. Thus, the relative values (ratio 
between various morphometric variables) appear more 
specific in distinguishing the species than their absolute 
values. When published online, the TRAJAN application 
software system enables semiautomated T. sambuci and T. 
fuscipennis discrimination. The user-friendly application 
analyzes all the input variables (morphometric characters) 
measured (in µm) as linear distances on digital images of 
slide-mounted specimens using any microscopic image 
analysis software. The reliability of the system has been 
successfully proven by a set of 52 independent specimens 
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Figure 4. Eigenvalue analysis for T. fuscipennis and T. sambuci 
including females only; main variability is just given by 2 species, 
not by sex.
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Figure 5. Graph of the principal components PC1 vs. PC2 
concerning Thrips data analysis. f - T. fuscipennis; s - T. sambuci.
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concerning Thrips data analysis. f - T. fuscipennis; s - T. sambuci.
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with no errors recorded, even in the case of limited 
material. The application enables one to distinguish only 
the studied species, however; it indicates unknown results 
when the input data do not refer to either of the 2 defined 
alternatives. The first field expressing sex determines all 
other valid fields with relevant characters.

4. Discussion
Undisputedly, the use of artificially intelligent systems 
has spread to many fields of science (Weeks and Gaston, 
1997; Do et al., 1999), including applied entomology 
(Solis-Sanchez et al., 2001; Fedor et al., 2009). ANNs, 
using a highly interconnected group of simulated neurons 
that process information in parallel (Haralabous and 
Georgakarakos, 1996) and learning from a set of examples, 
have been widely theoretically described (Freeman and 
Skapura, 1992; Ripley, 1993; Haykin 1994; Haralabous and 
Georgakarakos, 1996); therefore, there is no need to do so 
in this methodical paper. 

Being quite different from standard statistical tools, 
the approach is unique and autonomous; however, it is 

often described as a black-box system with no readily 
interpretable explanation for the prediction provided 
(Ripley, 1993; Haralabous and Georgakarakos, 1996). 
Despite entomologists often trying to find a parallel in basic 
statistics (average, maximum, minimum, median), the 
process for obtaining the internal structure of a network is 
complex, with no defined methodology (Isasi and Galván, 
2004). As an advantage, the quantity of the material 
reflects the specific approach of artificially intelligent 
systems, when even a limited number of samples appear 
sufficient for reliable analysis and searching for patterns. 
This differs from the standard statistical tools, operating 
with thousands of samples, which have, in fact, practical 
consequences for the development of identification 
systems. In Thysanoptera identification, this phenomenon 
has been proven by Fedor et al. (2008, 2009).

This paper has shown the  practical use of artificial 
intelligence in applied pest identification systems, having 
been encouraged by many previous papers dealing with 
various species discrimination (Clark, 2003; Kavdır, 2004; 
Marini et al., 2004; Esteban et al., 2009). We have defined 
a total of 17 characters, measured or determined for each 
Thrips fuscipennis and T. sambuci specimen, including 16 
quantitative morphometric or qualitative characters on 
different parts of their bodies and sex as the 17th. Most 
of the characters have been commonly applied in Thrips 
species identification (e.g., Nakahara, 1994; zur Strassen, 
2003; Mound and Masumoto, 2005; Mound and Azidah, 
2009) and have been supposed to enable distinguishing 
between Thysanoptera species (Fedor et al., 2008, 2009). 
Generally, there are many characters available for analyzing 
among the Thrips species, such as those published by 
Kucharczyk and Kucharczyk (2009) in their taxonomic 
revision of T. atratus and T. montanus (e.g., the number of 
distal setae on the first vein of the forewing, the shape of 
the microtrichial comb on the posterior margin of tergum 
VIII, the number of discal setae on abdominal sternites 
V and VII, and the length of antennal stylus). The high 
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value of the selected and measured characters (especially 
morphometric) has been recently proven in our previous 
projects on some other Thysanoptera taxa (Fedor et al., 
2008, 2009), including those controlled and monitored 
by phytosanitary staff. Mature Thrips sambuci and T. 
fuscipennis may be distinguished by differences in color 
of antennal segments (Schliephake and Klimt, 1979; zur 
Strassen, 2003). However, according to our experiences, 
the color characters can be very variable in specimens 
originating from different populations and stations, and 
sometimes it is not possible to accurately identify the 
species (Mound and Minaei, 2010). Moreover, for ANN 
systems to establish a color scale with clear borders may 
be quite challenging.

Our project has been predominantly established 
on a set of morphometric characters, which used to be 
presented just as the additional data in many identification 
keys. This paper, moreover, has emphasized morphometric 
characters in their appropriate combination as an 
autonomous source of information necessary for reliable 
discrimination. Despite intraspecific variability induced 
both genetically and ecologically, when appropriately 
combined (not single), morphometric characters are 
capable of being successfully applied in identification 
systems (e.g., Vaňhara et al., 2007; Esteban et al., 2009; 
Muráriková et al., 2011). 

The use of an optimal 3-layer ANN architecture (17, 4, 
1) enables fast and reliable classification, with nearly 100% 
accuracy shown during the extensive verification process. 
Compared to many other similar systems published by 
Marini et al. (2004), Kavdır (2004), Vaňhara et al. (2007), 
Fedor et al. (2008), and Han et al. (2012), the proposed 
optimum architecture works very reliably. For instance, 
to achieve the differentiation of 2 Juniperus species, a 
feedforward MLP network was proposed, which attained 
98.6% success in the training group and 92.0% success in 
the testing or unknown group (Esteban et al., 2009).

The data set generated during the morphometric 
measurements represents a valuable source for species 
discrimination. Although this paper does not offer any 
taxonomic revision, the key to reliable ANN analysis lies 
in an appropriate matrix transformation and selection 
of specific statistical approach, which applies in parallel 
several autonomous methods to prove the hypotheses 
more reliably. For instance, PCA is one of the simplest 
eigenvector-based multivariate analyses, and its operation 
can be thought of as revealing the internal structure of the 
data in a way that best explains the variance in the data 
(Chiapella, 2000; Lilburn and Garrity, 2004; Apuan et al., 
2010). The method was thus successfully used to determine 
the relations among 26 morphological characters (e.g., 
length of antennal segments and sense cones, length of 
dorsal setae on head, length of pronotal setae) in a group 
of 35 second larval instar Thrips species from Central 

Europe (Kucharczyk, 2010). The PCA method was applied 
to distinguish similar Thrips (T. atratus and T. montanus) 
species for the first time by Kucharczyk and Kucharczyk 
(2009). Since the description, both of them were 
reclassified to Thrips, Taeniothrips, or Similothrips genera 
(Priesner, 1964; Schliephake and Klimt, 1979; Schliephake, 
2001). Finally, 8 female and 12 male morphological 
characters were successfully analyzed to recognize these 
species more easily. The multidimensional methods (such 
as PCA or factor analysis) were applied in this paper as 
an important step in ANN processing, to prove whether 
the set of selected variables had the power to reliably 
distinguish both species in artificially intelligent systems, 
as preliminarily proposed in our previous papers (Fedor et 
al., 2008, 2009), including in the case of T. sambuci and T. 
fuscipennis PCA discrimination (Kucharczyk et al., 2012).

In the factor analysis, the low cumulative variance 
(74.27%) for the first 3 eigenvalues emphasizes some other 
sources of variability or noise in the data. The reason may 
be a wider spread of morphometric character values caused 
by high morphological plasticity and/or simply errors in 
the measurements. Moreover, high noise in the variables 
measured can correspond with some characters with no 
significant contribution in distinguishing the species. 

The ANN system may be successfully applied as a 
credible supplementary (alternative) identification tool, for 
instance, when the standard characters have high overlap. If 
the common morphological keys hint at practical problems 
of high morphological plasticity, the artificially intelligent 
system is capable of extracting hidden information from 
highly noisy data. One of the main objectives of this paper 
was to offer ANNs as a reliable identification system for 
practical, specific phytosanitary use, when the other 
standard methods appear limited financially (e.g., DNA 
analysis) or by high morphological plasticity (common 
morphological keys). Artificially intelligent systems could 
refine their performance by comparing multivariate 
continuous morphometric data more efficiently or simply 
providing an independent check, e.g., for specific cases and 
critical taxa (Clark, 2003; Esteban et al., 2009), specimens 
partly damaged by rough collecting methods (sticky traps, 
aeroplanktonic traps, Tullgren photoeclectors, etc.), or old 
slides (Fedor et al., 2008). 

Homologous characters can be objectively defined 
as distances on the thrips body, and the measurement of 
such distances requires only limited experience in slide-
mounting techniques, as well as basic knowledge of thrips 
morphology. Technical requirements are limited to a 
microscope with an eye-piece graticule or a digital camera 
and image analysis software, which would allow more 
comfort.

Identification of insect species can be sometimes 
time-consuming and can require technical expertise, 
so an automated insect identification method is needed 
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(Han et al., 2012). Artificial intelligence offers reliable and 
independent systems, but they require a sufficient software 
background and at least elementary statistical experience. 
Therefore, any applied research should be accompanied by 
the effective software proposal as a final product of ANN 
application in species identification. Although the need for 
the automation of routine biological object identification 
has been rather concentrated into image analysis software 
tools (Weeks and Gaston, 1997; Do et al., 1999; Mayo and 
Watson, 2007) or even the classification system design 
based on Blackfin DSP and 3G wireless communication 
technology, which is composed of a remote online 
classification platform with a digital signal processor and 
a  host control platform (Han et al., 2012), the system 
proposed in this paper, which is based on morphometric 
variables, works with greater reliability.

Obviously, ANN systems, as any alternative approach 
to species identification, have their specific limits (Weeks 
and Gaston, 1997; Gaston and O’Neill, 2004; Fedor et al., 
2008). Selection of significant morphometric characters 
markedly depends on the analyzed taxa and should be 
thus performed by a professional taxonomist (theoretical 
phase). The power of artificially intelligent tools may 
rely on each member of the phytosanitary staff and his 
preparatory and measurement skills (practical phase). 
Obviously it takes some time to get basic experience when 
using ANN systems. For instance, errors in identification 
of Thysanoptera can be caused by intraspecific variation, 
even though distinguishing between 2 disputably different 

species occurs almost with no problems. The ANN 
architecture in this case enables one to distinguish between 
T. sambuci and T. fuscipennis only. Specimens of other 
species will not be accepted in the identification window.

The artificially intelligent systems may be practically 
applied as a credible alternative for online semiautomated 
pest identification. The online user-friendly application 
clearly enables prompt T. sambuci and T. fuscipennis 
discrimination according to the set of the analyzed (mainly 
morphometric) characters; its high reliability has been 
successfully demonstrated by a set of 52 independent 
specimens (measured by independent persons) with 
no errors recorded. The system has been established to 
distinguish 2 analyzed species, but it also possesses an ability 
to indicate when a species is unknown or when it encounters 
invalid data. Conceptually, this approach should be applied 
as a supplementary method in specific cases for a group of 
several relatively disputably discriminable species. Obviously, 
we do not argue that the ANN identification systems could 
automatically replace all the standard methods available in 
applied entomology; rather, our methodical paper presents 
a tool that may find practical use in some specific problems 
of reliable and prompt identification of pests.
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