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SUMMARY.In the first part we study the mappings which p preserve zero asymp-
totic density and we give a characterization of the sets of zero asymptotic density
in the terms of bijections. The object of observations in the second and third part
is the uniform density

Let N be the set of natural numbers. For any subset A C N and =z > 0, let
A(x) be the cardinality of AN [0,z). The value limsup, x ' A(z) := d(A) is called
the upper asymptotic density of A, the value liminf, 2= ' A(z) := d(A) is called the
lower asymptotic density of A. If d(A) = d(A) then we say that A has an asymptotic
density and the value d(A) = d(A) is called the asymptotic density of the set A. It
is easy to see that this if and only if the limit lim, 2~ A(z) := d(A)(= d(A) = d(A))
exists. For more details on the asymptotic density we refer to the paper [G].

Lemma 1. Suppose that A C N is an infinite and f : A — N is such a mapping
that

(1) limAinf @ > 0.

Then for every S C A it holds
(2) d(S) = 0 = d(f(S)) = 0.

Proof:. The inequality (1) implies that for some a > 0 we have n-a < f(n),n € A.
This implies that for z > 0 we have f(n) < z yields n - a < . Thus for S C A we
get f(S)(z) < S(%). From this we immediately obtain (2). [

If f: N — N fulfills the condition (2) for every set S C N we say that f preserves
the zero density.

For every set S C N it holds that d(S) = 0 if and only if d(N'\ S) = 1. From this
we obtain immediately :

Lemma 2. Let f: N — N be a permutation. Then f preserves the zero density if
and only if for every R C N it holds

3) d(R) = 1= d(f(R)) = 1.
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Theorem 1. Let g : N — N be such a permutation that there exists a set A C N,
d(A) =1=d(g(A)), and for every infinite S C A, d(S) =0, we have

(4) limsinf @ > 0.

Then g preserves the zero density.

Proof. Let R C Nand d(R) = 1. Then d(RNA) = 1. Thus d(N\ RNA) = 0. From
(4) and Lemma 1 we get d(g(N\ RN A)) = 0. This yields d(g(RN A)) = 1, thus
d(g(R)) = 1. The assertion follows from Lemma 2. O

Example. Let N\ {n?,n € N} = AUB and N\ {n®,n € N} = CU D, where
A= {a1 < ag < },B = {bl < by < },C = {Cl < e < },D = {dl <ds < }
Moreover ANB = (0 =CnND. Let us consider the permutation g : N — N where
g(n?) =n3n €N and g(ax) = cx,g(br) = di.. If we suppose that the sets A, B, C, D
have positive asymptotic density, then g fulfills the assumption of Theorem 1. If
d(A) # d(C) then g preserves the zero density but does not preserve the asymptotic
density.

Theorem 2. Let g : N — N be an injective mapping and A CN ;| A = {a; < as <
...} an infinite set.

a) If
(5) n11—>120 ai max{g(a;),j =1,..,n} =0
then d(A) = 0.
b) If
. oglan)
(6) nlLII;O P 0
then d(A) = 0.

Proof. a) The values g(a;),j = 1,...,n are different positive integers and so theirs
maximum must be greater than n — 1. This implies

n 1
D= N i=1,..n)
0 S max{g(a;),j =1,...,n}

Now (5) implies d(A) = 0.
b)Put ag, such that g(ax,) = max{g(a;),j =1,...,n},n=1,2,... Then

g(ag,) < g(ax,)

G ag

n

because ak, < a,. The set {g(a,),n =1,2,...} infinite and so k,, — 0o as n — 0.
Therefore (6) implies (5). O

Aa a corollary of Theorem 2 we obtain the following characterization of the sets
of zero density in the terms of permutations.

Corollary. Let AC N, A= {a; <ag < ...} be an infinite set. Then d(A) =0 if
and only if there exists a permutation g : N — N fulfilling (6).
Proof. The sufficiency follows from Theorem 2. If d(4) = 0 then ;- — 0 for

n — oco. Put B = N\ A = {b,,n = 1,2,...}. The permutation g given by
glan) = 2n,g(b,) = 2n + 1, fulfills (6). O
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UNIFORM DENSITY

Let z < y be two positive real number, put A(z,y) := A(y) — A(z), thus this
value gives us the number of elements of A between x, y.

Denote ®(A) = maxy A(k,k + s),as(A) = ming A(k, k + s). It is well known
that there exist the limits lim, 1a%(A) = w(A) and lim, Lo, (A) := u(A). The
value u(A) is called the upper uniform density of A and the value u(A) is called
the lower uniform density of A. The definition implies :

1) If A C N and the set A contains the blocks of consecutive numbers of arbitrary
length then w(A) = 1.

Let us denote B = N\ A. Then B(k,k+s) = s— A(k,k+ s) thus u(B) = 1 —u(A4)
and u(B) =1 — u(A). Therefore it holds

i) If A C N and the set N\ A contains the blocks of consecutive numbers of arbitrary
length then u(A) = 0.

Theorem 1. Let A, B be two infinite subsets of N such that A contains the
blocks of consecutive elements from B of arbitrary length. Then u(A) > u(B).

Proof: The assumptions yield that for arbitrary n it is such k that A(k,k+n) >
B(k,k+n), thus maxy A(k, k+n) > ming B(k, k+n) and the assertion follows. O

If for A C N it holds u(A4) = @w(A) := u(A) then we say that A has uniform
density, and the value u(A) is called the uniform density of A.

Let A = {a; < as < ...} be an infinite set. It is well known fact that if > a, ! <
oo then A has the asymptotic density and d(A) = 0. Now we give an example that
this does not hold for the uniform density. Consider the set A = U, {n!+1,...,nl4+n}.
From i) we see that w(A) = 1 but it is easy to prove that in this case >, a,! < cc.

Theorem 2. Let {m,} be a sequence of positive integers, such that (mj, my) =1
for k #j. Put A=U52,m,N. Then

(1) u(A) =1

(2) u(A) =1 (1= 5.

Proof: (1). The numbers my, ..., m,, are relatively prime, thus due to the Chi-
nese reminder theorem we obtain that there exists such a positive integer x,, that
Zn, = —j (mod m;) for j =1,...,n. Therefore x,, + j € m;N, j=1,...n. This yields
Ty +1,...,2, +n € A and from i) we obtain u(A) = 1.

(2).Put A, = U?_ym;N. Clearly A, C A. It can be easily proved u(A,) =
-1, (1 - %]) and so for n — oo we obtain 1 —J[*(1 — ;=) < u(A). Other
inequality we obtain from the fact that d(A) =1 —[[72,(1— %n) O

Denote by Q,,, for n = 2,3, ... the set of positive integers which are not divisible
by the n— th power of prime number. Denote by P the set of all prime numbers.
Then it holds N\ Q,, = Upepp”N, where the union is considered through all prime
numbers p. Thus u(N\ Qn) =1 —[],cp(1 —p™") > 0 and so from ii) it follows
that @, does not contains the blocks of consecutive integers of arbitrary length.

% %k Xk

Now we shall study one type of arithmetic functions from point of view of the
uniform density of their range.
Lemma 1. Let f: N — N be an arithmetic function fulfilling the condition

(a) liminf, M > 0 uniformly for k=1,2,....
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Then for every A C N, u(A) =0 it holds u(f(A)) = 0.
Proof: The condition (a) implies that for suitable 8 > 0,n9 € N we have

(1) fn+k)—f(k)>pn, n>ng, k=1,2,....

Thus the set F := f(N) can be represented in the form F = F()U-..UF () where
FO = {f@i) < f(i+mno) < ... < fli +mng) < ...},

for i = 1,...,n0. Let us denote E® = F) N f(A). Thus E® = {f(i +mng);i +

mng € A,m € N},i = 1,...,ng. Clearly f(A) ¢ EMU...UE™), therefore it suffices

to prove u(E®) =0,i=1,...,ng.

Let k,n € N and

fli+mang), ..., f(i +msno) € [k, k +n]
for mi <mg < ..ms, mj € Nyi+myng € A,j=1,...;5. Then
fl+mgng) — f(i +ming) < n.
From the other side the inequality (1) implies
fli+mgsng) — f(i +ming) > B(ms — m1)ng.
This yields S(ms —m1)ng < n and so mg < my + % The numbers i +m;ng, j =
1,..., s belong to the interval [r,r + %] , where r = i+ming. We get s < A(r,r+ %),
in the other words
(2) EO(k, k+n) < A(r,r+ %),
thus u(E®W) =0. O

Now we recall a well known property of uniform density. Denote for a prime
number p and A C N by A, the set of these elements of A which are divisible by p
and not divisible by p?.

In [P] it is proved the following statement: Let P be such set of primes that
> pp t =o00. Then for A C N it holds
(3) (Vp € P;u(Ap) =0) = u(A) =0.

Lemma 2.Let P be such set of primes that Y, p~' = co. Denote forr = 1,2, ...
by N(r) the set of all positive integers which have at most r distinct prime divisors
from P. Then u(N(r)) =0,r =1,2,....

Proof: By induction with respect to . Clearly N(0), = 0, for p € P, thus (3)
yields w(N(0)) = 0.

It is easy to see that N(r + 1), C pN(r), thus from (3) we obtain u(N(r)) =0 =
u(N(r+1))=0,r=1,2,.... O

Theorem 3. Let f : N — N be an arithmetic function fulfilling the condition
(a) from Lemma 1. Let P be such set of primes that > p p~! = co. Denote by w(n)
the number of distinct prime divisors from P of n,n € N. Let f fulfills moreover
the condition

(b) There exists a € N,a > 1 that a9“™)|f(n) forn € N. Where g: N — N is
such a function that g(n) — oo for n — co.
Then u(F) =0, where F = {f(n),n € N}.

Proof: Let s € N. The set F' can be decomposed to F' = F; U Fy, where
Fy =A{f(5);7 € Nya®|f(j)} and F» = F \ Fy. Clearly u(Fy) < a=°. We prove
u(F3) = 0. The condition (b) yields that there exists a nonnegative integer r
that Fy C f(N(r)), where N(r) is the set from Lemma 2. Thus Lemma 1 implies
u(F3) = 0. Therefore u(F) < a~* and for s — oo we obtain u(F)=0. O



41

TRANSFORMATIONS WHICH PRESERVE THE UNIFORM DENSITY

We conclude this note by one sufficient condition under which an injective map-
ping preserves the uniform density.

Theorem 1. Let g: N — N be an injection fulfilling the condition

g(n+k) —g(k)

1 li =1
(1) Jim .
uniformly for k =1,2,---. Then g preserves the uniform density.

For the proof we shall use the following statement proved in the paper [GLS].
Lemma. Let S = {s1 < s < ...} C N be an infinite set. The S has the uniform
density if and only if the fraction

n
Sn+k — Sk

converges uniformly as n — oo, k = 1,2,.... And in this case the value of its limit
is equal to the uniform density of S.

Proof of Theorem 1. The condition (1) yields that for two sequences {hi(n,k)},
{ha(n,k)} such that hq(n,k) — ha(n, k) — oo, n — oo uniformly for k = 1,2,---
we have

g(hl(”; k)) - Q(hz(nv k))
(2) T (k) — ha(m, k)

=1, n—oo

(As usually we use the symbol = for the uniform convergence.)
Let A= {a(l) < a(2) < ...} be an infinite set, which has the uniform density and
u(A) = .

From Lemma we obtain

n

3) a(n+k) —a(k)

=a, n—o0

Put g(A) = {g(a(1)), g(a(2)),...}. These elements are not necessary arranged to
their magnitude. Clearly a(n + k) — a(k) > n, and so a(n + k) — a(k) = oo as
n — oo. The relation (2) now implies

g(a(n + k)) - g(a(k))

4 1

) antk)—alk) o mToe

Therefore for suitable n, the fraction on left side is positive for k = 1,2,--- , thus
g(a(no + k)) > g(a(k)), k = 1,2,---. And so we see that the set g(A) we can
decompose into a union of disjoint sets

(5) g(A) =By UBy U---U By,

where

B; ={g(a(j)) < gla(j+mno)) <---gla(j+rno)---}j=1,-- no.
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The relation (3) now implies

(6)

T-No =
a(j + (r+k)n0) —a(j —|—k:~n0)

Moreover the relation (2) yields

(7)

9(a(f + (k+r)no)) — g(aG + k- no))
a(j+ (k+r)no) —a(j +k-no)

1, r— o

because the denominator is > r - ng and so tends to co uniformly for £ =1,2,---.
Thus from (6) and (7) we can deduce

r e}
=—, Tr— 00

g(a(j+ (k+r)no)) —g(a(j +k-no)) no

and so u(B;) = %, j=1,--- ,ng. From (5) we have u(g(4)) =a. O

no’

Consider g(n) = n+clogn+0O(1). Then g(n+k)—g(k) = n+c-log (£+1)+0(1),
but O < log(%# 4 1) < log(n + 1) and g fulfills (1). Analogously it can be proved

that
g(n) =n+cilog; +co loggb) +---4+0(1)
where ry, 79, -+ ,7; > 1 fulfills (1).
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