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Priemyselná 4, P.O. BOX 4, Sk-914 43, Trnava,SR
e-mail: pasteka@mat.savba.sk

SUMMARY.In the first part we study the mappings which p preserve zero asymp-
totic density and we give a characterization of the sets of zero asymptotic density
in the terms of bijections. The object of observations in the second and third part
is the uniform density

Let N be the set of natural numbers. For any subset A ⊆ N and x > 0, let
A(x) be the cardinality of A ∩ [0, x). The value lim supx x−1A(x) := d(A) is called
the upper asymptotic density of A, the value lim infx x−1A(x) := d(A) is called the
lower asymptotic density of A. If d(A) = d(A) then we say that A has an asymptotic
density and the value d(A) = d(A) is called the asymptotic density of the set A. It
is easy to see that this if and only if the limit limx x−1A(x) := d(A)(= d(A) = d(A))
exists. For more details on the asymptotic density we refer to the paper [G].

Lemma 1. Suppose that A ⊂ N is an infinite and f : A → N is such a mapping
that

(1) lim inf
A

f(n)
n

> 0.

Then for every S ⊂ A it holds

(2) d(S) = 0 ⇒ d(f(S)) = 0.

Proof:. The inequality (1) implies that for some α > 0 we have n ·α < f(n), n ∈ A.
This implies that for x > 0 we have f(n) ≤ x yields n · α < x. Thus for S ⊂ A we
get f(S)(x) ≤ S( x

α ). From this we immediately obtain (2). ¤
If f : N→ N fulfills the condition (2) for every set S ⊂ N we say that f preserves

the zero density.
For every set S ⊂ N it holds that d(S) = 0 if and only if d(N \S) = 1. From this

we obtain immediately :

Lemma 2. Let f : N→ N be a permutation. Then f preserves the zero density if
and only if for every R ⊂ N it holds

(3) d(R) = 1 ⇒ d(f(R)) = 1.
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Theorem 1. Let g : N → N be such a permutation that there exists a set A ⊂ N,
d(A) = 1 = d(g(A)), and for every infinite S ⊂ A, d(S) = 0, we have

(4) lim inf
S

g(n)
n

> 0.

Then g preserves the zero density.

Proof. Let R ⊂ N and d(R) = 1. Then d(R∩A) = 1. Thus d(N\R∩A) = 0. From
(4) and Lemma 1 we get d(g(N \ R ∩ A)) = 0. This yields d(g(R ∩ A)) = 1, thus
d(g(R)) = 1. The assertion follows from Lemma 2. ¤
Example. Let N \ {n2, n ∈ N} = A ∪ B and N \ {n3, n ∈ N} = C ∪ D, where
A = {a1 < a2 < ...}, B = {b1 < b2 < ...}, C = {c1 < c2 < ...}, D = {d1 < d2 < ...}.
Moreover A ∩ B = ∅ = C ∩D. Let us consider the permutation g : N → N where
g(n2) = n3, n ∈ N and g(ak) = ck,g(bk) = dk. If we suppose that the sets A,B, C, D
have positive asymptotic density, then g fulfills the assumption of Theorem 1. If
d(A) 6= d(C) then g preserves the zero density but does not preserve the asymptotic
density.

Theorem 2. Let g : N→ N be an injective mapping and A ⊂ N , A = {a1 < a2 <
....} an infinite set.
a) If

(5) lim
n→∞

1
an

max{g(aj), j = 1, ..., n} = 0

then d(A) = 0.
b) If

(6) lim
n→∞

g(an)
an

= 0

then d(A) = 0.

Proof. a) The values g(aj), j = 1, ..., n are different positive integers and so theirs
maximum must be greater than n− 1. This implies

n

an
≤ 1

an
max{g(aj), j = 1, ..., n}.

Now (5) implies d(A) = 0.
b)Put akn such that g(akn) = max{g(aj), j = 1, ..., n}, n = 1, 2, ... Then

g(akn)
an

≤ g(akn)
akn

because akn ≤ an. The set {g(an), n = 1, 2, ...} infinite and so kn →∞ as n →∞.
Therefore (6) implies (5). ¤

Aa a corollary of Theorem 2 we obtain the following characterization of the sets
of zero density in the terms of permutations.

Corollary. Let A ⊂ N , A = {a1 < a2 < ....} be an infinite set. Then d(A) = 0 if
and only if there exists a permutation g : N→ N fulfilling (6).

Proof. The sufficiency follows from Theorem 2. If d(A) = 0 then n
an

→ 0 for
n → ∞. Put B = N \ A = {bn, n = 1, 2, ...}. The permutation g given by
g(an) = 2n, g(bn) = 2n + 1, fulfills (6). ¤
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Uniform density

Let x < y be two positive real number, put A(x, y) := A(y) − A(x), thus this
value gives us the number of elements of A between x, y.

Denote αs(A) = maxk A(k, k + s), αs(A) = mink A(k, k + s). It is well known
that there exist the limits lims

1
sαs(A) := u(A) and lims

1
sαs(A) := u(A). The

value u(A) is called the upper uniform density of A and the value u(A) is called
the lower uniform density of A. The definition implies :
i)If A ⊂ N and the set A contains the blocks of consecutive numbers of arbitrary
length then u(A) = 1.
Let us denote B = N \A. Then B(k, k + s) = s−A(k, k + s) thus u(B) = 1− u(A)
and u(B) = 1− u(A). Therefore it holds
ii)If A ⊂ N and the set N\A contains the blocks of consecutive numbers of arbitrary
length then u(A) = 0.

Theorem 1. Let A,B be two infinite subsets of N such that A contains the
blocks of consecutive elements from B of arbitrary length. Then u(A) ≥ u(B).

Proof: The assumptions yield that for arbitrary n it is such k that A(k, k+n) ≥
B(k, k+n), thus maxk A(k, k+n) ≥ mink B(k, k+n) and the assertion follows. ¤

If for A ⊂ N it holds u(A) = u(A) := u(A) then we say that A has uniform
density, and the value u(A) is called the uniform density of A.

Let A = {a1 < a2 < ...} be an infinite set. It is well known fact that if
∑

n a−1
n <

∞ then A has the asymptotic density and d(A) = 0. Now we give an example that
this does not hold for the uniform density. Consider the set A = ∪n{n!+1, ..., n!+n}.
From i) we see that u(A) = 1 but it is easy to prove that in this case

∑
n a−1

n < ∞.
Theorem 2. Let {mn} be a sequence of positive integers, such that (mj ,mk) = 1

for k 6= j. Put A = ∪∞n=1mnN. Then

(1) u(A) = 1
(2) u(A) = 1−∏∞

n=1(1− 1
mn

).

Proof: (1). The numbers m1, ..., mn are relatively prime, thus due to the Chi-
nese reminder theorem we obtain that there exists such a positive integer xn that
xn ≡ −j (mod mj) for j = 1, ..., n. Therefore xn + j ∈ mjN, j=1,...,n. This yields
xn + 1, ..., xn + n ∈ A and from i) we obtain u(A) = 1.

(2).Put An = ∪n
j=1mjN. Clearly An ⊂ A. It can be easily proved u(An) =

1 −∏n
j=1(1 − 1

mj
) and so for n → ∞ we obtain 1 −∏∞

n (1 − 1
mn

) ≤ u(A). Other
inequality we obtain from the fact that d(A) = 1−∏∞

n=1(1− 1
mn

). ¤
Denote by Qn, for n = 2, 3, ... the set of positive integers which are not divisible

by the n− th power of prime number. Denote by P the set of all prime numbers.
Then it holds N \Qn = ∪p∈PpnN, where the union is considered through all prime
numbers p. Thus u(N \ Qn) = 1 −∏

p∈P(1 − p−n) > 0 and so from ii) it follows
that Qn does not contains the blocks of consecutive integers of arbitrary length.

∗ ∗ ∗

Now we shall study one type of arithmetic functions from point of view of the
uniform density of their range.

Lemma 1. Let f : N→ N be an arithmetic function fulfilling the condition

(a) lim infn→∞
f(n+k)−f(k)

n > 0 uniformly for k = 1, 2, ....
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Then for every A ⊂ N, u(A) = 0 it holds u(f(A)) = 0.
Proof: The condition (a) implies that for suitable β > 0, n0 ∈ N we have

(1) f(n + k)− f(k) ≥ βn, n ≥ n0, k = 1, 2, ....

Thus the set F := f(N) can be represented in the form F = F (1)∪· · ·∪F (n0) where

F (i) = {f(i) < f(i + n0) < ... < f(i + mn0) < ...},
for i = 1, ..., n0. Let us denote E(i) = F (i) ∩ f(A). Thus E(i) = {f(i + mn0); i +
mn0 ∈ A, m ∈ N}, i = 1, ..., n0. Clearly f(A) ⊂ E(1)∪...∪E(n0), therefore it suffices
to prove u(E(i)) = 0, i = 1, ..., n0.

Let k, n ∈ N and

f(i + m1n0), ..., f(i + msn0) ∈ [k, k + n]

for m1 < m2 < ...ms, mj ∈ N, i + mjn0 ∈ A, j = 1, ..., s. Then

f(i + msn0)− f(i + m1n0) ≤ n.

From the other side the inequality (1) implies

f(i + msn0)− f(i + m1n0) ≥ β(ms −m1)n0.

This yields β(ms −m1)n0 ≤ n and so ms ≤ m1 + n
βn0

. The numbers i + mjn0, j =
1, ..., s belong to the interval [r, r+ n

β ] , where r = i+m1n0. We get s ≤ A(r, r+ n
β ),

in the other words

(2) E(i)(k, k + n) ≤ A(r, r +
n

β
),

thus u(E(i)) = 0. ¤
Now we recall a well known property of uniform density. Denote for a prime

number p and A ⊂ N by Ap the set of these elements of A which are divisible by p
and not divisible by p2.

In [P] it is proved the following statement: Let P be such set of primes that∑
P p−1 = ∞. Then for A ⊂ N it holds

(3) (∀p ∈ P ; u(Ap) = 0) ⇒ u(A) = 0.

Lemma 2.Let P be such set of primes that
∑

P p−1 = ∞. Denote for r = 1, 2, ...
by N(r) the set of all positive integers which have at most r distinct prime divisors
from P . Then u(N(r)) = 0, r = 1, 2, ....

Proof: By induction with respect to r. Clearly N(0)p = ∅, for p ∈ P , thus (3)
yields u(N(0)) = 0.

It is easy to see that N(r + 1)p ⊂ pN(r), thus from (3) we obtain u(N(r)) = 0 ⇒
u(N(r + 1)) = 0, r = 1, 2, .... ¤

Theorem 3. Let f : N → N be an arithmetic function fulfilling the condition
(a) from Lemma 1. Let P be such set of primes that

∑
P p−1 = ∞. Denote by ω(n)

the number of distinct prime divisors from P of n,n ∈ N. Let f fulfills moreover
the condition

(b) There exists a ∈ N, a > 1 that ag(ω(n))|f(n) for n ∈ N. Where g : N→ N is
such a function that g(n) →∞ for n →∞.

Then u(F ) = 0, where F = {f(n), n ∈ N}.
Proof: Let s ∈ N. The set F can be decomposed to F = F1 ∪ F2, where

F1 = {f(j); j ∈ N, as|f(j)} and F2 = F \ F1. Clearly u(F1) ≤ a−s. We prove
u(F2) = 0. The condition (b) yields that there exists a nonnegative integer r
that F2 ⊂ f(N(r)), where N(r) is the set from Lemma 2. Thus Lemma 1 implies
u(F2) = 0. Therefore u(F ) ≤ a−s and for s →∞ we obtain u(F ) = 0. ¤
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Transformations which preserve the uniform density

We conclude this note by one sufficient condition under which an injective map-
ping preserves the uniform density.

Theorem 1. Let g : N→ N be an injection fulfilling the condition

(1) lim
n→∞

g(n + k)− g(k)
n

= 1

uniformly for k = 1, 2, · · · . Then g preserves the uniform density.

For the proof we shall use the following statement proved in the paper [GLS].

Lemma. Let S = {s1 < s2 < ...} ⊂ N be an infinite set. The S has the uniform
density if and only if the fraction

n

sn+k − sk

converges uniformly as n →∞, k = 1, 2, .... And in this case the value of its limit
is equal to the uniform density of S.

Proof of Theorem 1. The condition (1) yields that for two sequences {h1(n, k)},
{h2(n, k)} such that h1(n, k) − h2(n, k) → ∞, n → ∞ uniformly for k = 1, 2, · · ·
we have

(2)
g
(
h1(n, k)

)− g
(
h2(n, k)

)

h1(n, k)− h2(n, k)
⇒ 1, n →∞

(As usually we use the symbol ⇒ for the uniform convergence.)
Let A = {a(1) < a(2) < . . . } be an infinite set, which has the uniform density and
u(A) = α.

From Lemma we obtain

(3)
n

a(n + k)− a(k)
⇒ α, n →∞

Put g(A) = {g(
a(1)

)
, g

(
a(2)

)
, . . . }. These elements are not necessary arranged to

their magnitude. Clearly a(n + k) − a(k) ≥ n, and so a(n + k) − a(k) ⇒ ∞ as
n →∞. The relation (2) now implies

(4)
g
(
a(n + k)

)− g
(
a(k)

)

a(n + k)− a(k)
⇒ 1, n →∞

Therefore for suitable no the fraction on left side is positive for k = 1, 2, · · · , thus
g
(
a(n0 + k)

)
> g

(
a(k)

)
, k = 1, 2, · · · . And so we see that the set g(A) we can

decompose into a union of disjoint sets

(5) g(A) = B1 ∪B2 ∪ · · · ∪Bn0

where
Bj = {g(

a(j)
)

< g
(
a
(
j + n0)

)
< · · · g(

a(j + rn0) · · · } j = 1, · · · , n0.
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The relation (3) now implies

(6)
r · n0

a
(
j + (r + k)n0

)− a(j + k · n0

) ⇒ α, r →∞

Moreover the relation (2) yields

(7)
g
(
a
(
j + (k + r)n0)

)− g
(
a(j + k · n0)

)

a
(
j + (k + r)n0

)− a(j + k · n0

) ⇒ 1, r →∞

because the denominator is ≥ r · n0 and so tends to ∞ uniformly for k = 1, 2, · · · .
Thus from (6) and (7) we can deduce

r

g
(
a
(
j + (k + r)n0)

)− g
(
a(j + k · no))

⇒ α

n0
, r →∞

and so u(Bj) = α
n0

, j = 1, · · · , n0. From (5) we have u
(
g(A)

)
= α. ¤

Consider g(n) = n+c·log n+O(1). Then g(n+k)−g(k) = n+c·log
(

n
k +1

)
+O(1),

but O ≤ log
(

n
k + 1

) ≤ log(n + 1) and g fulfills (1). Analogously it can be proved
that

g(n) = n + c1logn
r1

+ c2 log(n)
r2

+ · · ·+ O(1)

where r1, r2, · · · , rj > 1 fulfills (1).
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[GLS] Z. Gáliková, B. Lazslo, T. Šalát, Remarks on uniform density of sets of integers, Acta

Acad. Paedagog. Agriensis, Sect. Mat. (N.S) 29 (2002), 3 - 13.
[G1] G. Grekos, The density set: a survey, Tatra Mount. Math. Publ. 31 (2005), 103-111.


