Introduction. The measure of indeterminity was considered by R. V. L. Hartley in 1923, [Har], later C. Shannon

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$

Remark on the Entropy of Arithmetic functions

Milan Paštéka Pedagogická fakulta Trnavskej Univerzity Priemyselná 4, P.O. BOX 4, Sk-914 43, Trnava,SR e-mail: pasteka...mat.savba.sk

SUMMARY. In the present paper the definition of the entropy of arithmetic functions, based on the classical definition of entropy is given. Two properties of this notion are proved

Introduction. The measure of indeterminacy was considered by R. V. L. Hartley in 1923, [Har], later C. Shannon introduced for this value the name *entropy of* experiment or entropy of random variable, [Sh1] [Sh2]. If η is a random variable with possible results $a_1, ..., a_k$ then entropy of η is defined as

(i)
$$H(\eta) = -(P(\eta = a_1) \log P(\eta = a_1) + \dots + P(\eta = a_k) \log P(\eta = a_k)).$$

This value is always nonnegative, convexity of the function $x \log x$ provides that the maximum of $H(\eta)$ is $\log k$, in the case $P(\eta = a_j) = \frac{1}{k}$. And $H(\eta) = 0$ only in the case $P(\eta = a_j) = 1$ for some j. Later there were given some axiomatic definitions of entropy, which lead to formula (i). We refer to the paper [Fad], or to the monography [J-J].

Formulation. The formula (i) will be the starting point for our considerations. Denote by **N** the set of positive integers, **C** the set of complex numbers and **R** the set of real numbers. If $A \subset \mathbf{N}$ then put

$$\gamma_N(A) = \frac{|A \cap [1, N]|}{N}.$$

If \mathcal{P} is a property then instead of $\gamma_N(\{n; \mathcal{P}(n)\})$ we shall write only $\gamma_N(\mathcal{P})$. Notice that if it exists the limit $\lim_{N\to\infty} \gamma_N(A) := \gamma(A)$ then the value $\gamma(A)$ is called the asymptotic density of A. Also in this case we shall write $\gamma(\mathcal{P})$ instead of $\gamma(\{n; \mathcal{P}(n)\})$.

Let $f : \mathbf{N} \to \mathbf{X}$ be an arithmetic function where \mathbf{X} is a compact metric space. Consider $\mathcal{D} = \{C_1, ..., C_k\}$ a system of subsets of \mathbf{X} . Put

$$H(f, \mathcal{D}, N) := -\sum_{j=1}^{k} \gamma_N(f \in C_j) \log \gamma_N(f \in C_j)$$

for $N \in \mathbf{N}$. If there exists a limit

$$H(f, \mathcal{D}) := \lim_{N \to \infty} H(f, \mathcal{D}, N)$$

then this value will be called the *asymptotic entropy of* f with respect to \mathcal{D} .

Remark that this limit exists always in the case if the sets $f^{-1}(C_j)$ for j = 1, ..., k have the asymptotic density. (As usually we put $0 \cdot \log 0 = 0$). In the case when f is a real valued additive arithmetic function, so that the series $\sum \frac{||f(p)||}{p}, \sum \frac{||f(p)||^2}{p}$ (p- prime), converge, then the result of Erdös and Wintner (see for instance[E]) guaranties that the value $H(f, \mathcal{D})$ exists in the case if \mathcal{D} contains only intervals.

Denote for $z \in \mathbf{X}, \varepsilon > 0$ by $B(z, \varepsilon)$ the open ball with the centre z and the radius ε .

Let us consider $\mathcal{D} = \{B_1, ..., B_k\}$ as a cover of closure of the range of f by open balls. Remark that this closure is a compact set, thus such a cover always exists. Thus we can put in the usual way $n(\mathcal{D}) = max\{diamB_j; j = 1, ..., k\}$. Thus we can define the value

$$H(f,\varepsilon) = \inf\{H(f,\mathcal{D}); n(\mathcal{D}) < \varepsilon\}$$

for $\varepsilon > 0$. The limit

$$\lim_{\varepsilon \to 0+} H(f,\varepsilon) := H(f)$$

always exists and this value will be called asymptotic entropy of f. If $H(f) < \infty$ then we say that f has a finite asymptotic entropy.

Example 1. Let f be a periodic function modulo m. Suppose that all the values f(1), ..., f(m) are different. Thus we can consider a cover of its range $\mathcal{D} = \{B_1, ..., B_m\}$ such that $f(j) \in B_j$. We can suppose that the balls B_j are disjoint, thus

$$H(f, \mathcal{D}, N) \to -\sum_{j=1}^{m} \frac{1}{m} \log \frac{1}{m} = \log m$$

and so $H(f) = \log m$. Similarly it can be proved that $\mathcal{H}(f) = \log m$.

Proposition 1. Let $f : \mathbf{N} \to \mathbf{X}$ be such an arithmetical function that we have a disjoint decomposition

$$\mathbf{N} = A_1 \cup \ldots \cup A_m \cup R$$

where $\gamma(R) = 0$ and $\gamma(A_j)$ exists for j = 1, ..., m, and $\lim_{n \in A_j, n \to \infty} f(n) = L_j$, for j = 1, ..., m, and all these limits are different. Then

$$H(f) = -\sum_{j=1}^{m} \gamma(A_j) \log \gamma(A_j).$$

Proof. Let $\mathcal{D} = \{B_1, ..., B_k\}$ be a cover of the closure of range of f by open balls. Thus we have that $L_j \in B_{h_j}$, for j = 1, ..., k. If we suppose that $n(\mathcal{D}) < \varepsilon$ for a suitable $\varepsilon > 0$ then the sets B_{h_j} are different, moreover we can suppose the ball B_h for $h \neq h_j, j = 1, ..., m$ contains only the elements f(n) for $n \in R$ with exclusion at most a finite number of n. This $\gamma_N(B_h) \to 0$ for $h \neq h_j, j = 1, ..., m$, and $\gamma_N(B_{h_j}) \to \gamma(A_j)$ as $N \to \infty$. Then the assertion follows.

Proposition 2. Let $f : \mathbf{N} \to [0, 1]$ be an arithmetical function, with a continuous asymptotic distribution function. Then $H(f) = \infty$.

Proof. Consider $\mathcal{D} = \{I_1, ..., I_k\}$ as a cover the unit interval by the system of open intervals. Denote by g the asymptotic distribution function of f. If $I_j = (x_1^{(j)}, x_2^{(j)})$, such that $x_1^{(j)} < x_1^{(j+1)} < 1$ then $\gamma(f \in I_j) = g(x_2^{(j)}) - g(x_1^{(j)}) := h_j$, as

j = 2, ..., k - 1 and $\gamma(f \in I_1) = g(x_2^{(1)}) := h_1$ and $\gamma(f \in I_k) = 1 - g(x_1^{(k)}) := h_k$. Thus we have

(1)
$$H(f, \mathcal{D}) = \sum_{j=1}^{k} h_j \log \frac{1}{h_j}.$$

The intervals $I_j, j = 1, ..., k$ cover the unit interval and so the sum of its Riemann -Stieltjes measures is bigger than 1, thus $\sum_{j=1}^k h_j \ge 1$. The function g is uniformly continuos on [0, 1], thus there exists such $\varepsilon > 0$ that for $n(\mathcal{D}) < \varepsilon$ it holds $\frac{1}{h_j} > m$ for m positive integer - fixed. Therefore (1) implies $H(f, \varepsilon) > logm$, and for $m \to \infty$ we obtain the assertion.

References

[Fad] Fadejev, D. K. : To notion of entropy of a finitee probability scheme, (in Russian), Usp. Mat. Nauk 11 (1956), 227 - 231

[E] Elliott, P.D.T.A.: Probabilistic Number Theory, Springer - Verlag, New York, Heidelberg, Berlin, 1979

[Har] Hartley, R. V. L. : Transmison of information. Bell Syst. Tech. J. 7, 1928, p. 535

[J-J] A. M. Jaglom, I. M. Jaglom : Probability and Information (in Russian), Gos. iz. fiz. mat. lit. Moscov, 1960

[Sh1] Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 1948 p. 379

[Sh2] Shannon, C.: Certain results in coding theory for noisy channels, Inf. and Control 1, (1965) p. 390