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SUMMARY.In the present paper the definition of the entropy of arithmetic func-
tions, based on the classical definition of entropy is given. Two properties of this
notion are proved

Introduction. The measure of indeterminacy was considered by R. V. L. Hart-
ley in 1923, [Har], later C. Shannon introduced for this value the name entropy of
experiment or entropy of random variable, [Sh1] [Sh2]. If η is a random variable
with possible results a1, ..., ak then entropy of η is defined as

(i) H(η) = −(P (η = a1) log P (η = a1) + ... + P (η = ak) log P (η = ak)).

This value is always nonnegative, convexity of the function x log x provides that
the maximum of H(η) is log k, in the case P (η = aj) = 1

k . And H(η) = 0 only
in the case P (η = aj) = 1 for some j. Later there were given some axiomatic
definitions of entropy, which lead to formula (i). We refer to the paper [Fad], or to
the monography [J-J].

Formulation. The formula (i) will be the starting point for our considerations.
Denote by N the set of positive integers, C the set of complex numbers and R the
set of real numbers. If A ⊂ N then put

γN (A) =
|A ∩ [1, N ]|

N
.

If P is a property then instead of γN ({n;P(n)}) we shall write only γN (P). Notice
that if it exists the limit limN→∞ γN (A) := γ(A) then the value γ(A) is called
the asymptotic density of A. Also in this case we shall write γ(P) instead of
γ({n;P(n)}).

Let f : N → X be an arithmetic function where X is a compact metric space.
Consider D = {C1, ..., Ck} a system of subsets of X. Put

H(f,D, N) := −
k∑

j=1

γN (f ∈ Cj) log γN (f ∈ Cj)

for N ∈ N. If there exists a limit

H(f,D) := lim
N→∞

H(f,D, N)
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then this value will be called the asymptotic entropy of f with respect to D.
Remark that this limit exists always in the case if the sets f−1(Cj) for j = 1, ..., k

have the asymptotic density. (As usually we put 0 · log 0 = 0). In the case when f

is a real valued additive arithmetic function, so that the series
∑ ||f(p)||

p ,
∑ ||f(p)||2

p

(p− prime), converge, then the result of Erdös and Wintner (see for instance[E])
guaranties that the value H(f,D) exists in the case if D contains only intervals.

Denote for z ∈ X, ε > 0 by B(z, ε) the open ball with the centre z and the radius
ε.

Let us consider D = {B1, ..., Bk} as a cover of closure of the range of f by open
balls. Remark that this closure is a compact set, thus such a cover always exists.
Thus we can put in the usual way n(D) = max{diamBj ; j = 1, ..., k}. Thus we can
define the value

H(f, ε) = inf{H(f,D); n(D) < ε}
for ε > 0. The limit

lim
ε→0+

H(f, ε) := H(f)

always exists and this value will be called asymptotic entropy of f . If H(f) < ∞
then we say that f has a finite asymptotic entropy.

Example 1. Let f be a periodic function modulo m. Suppose that all the
values f(1), ..., f(m) are different. Thus we can consider a cover of its range D =
{B1, ..., Bm} such that f(j) ∈ Bj . We can suppose that the balls Bj are disjoint,
thus

H(f,D, N) → −
m∑

j=1

1
m

log
1
m

= log m

and so H(f) = log m. Similarly it can be proved that H(f) = log m.
Proposition 1. Let f : N → X be such an arithmetical function that we have

a disjoint decomposition
N = A1 ∪ ... ∪Am ∪R

where γ(R) = 0 and γ(Aj) exists for j = 1, ...,m, and limn∈Aj ,n→∞ f(n) = Lj , for
j = 1, ..., m, and all these limits are different. Then

H(f) = −
m∑

j=1

γ(Aj) log γ(Aj).

Proof. Let D = {B1, ..., Bk} be a cover of the closure of range of f by open
balls. Thus we have that Lj ∈ Bhj , for j = 1, ..., k. If we suppose that n(D) < ε
for a suitable ε > 0 then the sets Bhj are different, moreover we can suppose the
ball Bh for h 6= hj , j = 1, ..., m contains only the elements f(n) for n ∈ R with
exclusion at most a finite number of n. This γN (Bh) → 0 for h 6= hj , j = 1, ..., m,
and γN (Bhj ) → γ(Aj) as N →∞. Then the assertion follows.

Proposition 2. Let f : N → [0, 1] be an arithmetical function, with a continu-
ous asymptotic distribution function. Then H(f) = ∞.

Proof. Consider D = {I1, ..., Ik} as a cover the unit interval by the system of
open intervals. Denote by g the asymptotic distribution function of f . If Ij =
(x(j)

1 , x
(j)
2 ), such that x

(j)
1 < x

(j+1)
1 < 1 then γ(f ∈ Ij) = g(x(j)

2 )− g(x(j)
1 ) := hj , as
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j = 2, ..., k − 1 and γ(f ∈ I1) = g(x(1)
2 ) := h1 and γ(f ∈ Ik) = 1 − g(x(k)

1 ) := hk.
Thus we have

(1) H(f,D) =
k∑

j=1

hj log
1
hj

.

The intervals Ij , j = 1, ..., k cover the unit interval and so the sum of its Riemann -
Stieltjes measures is bigger than 1, thus

∑k
j=1 hj ≥ 1. The function g is uniformly

continuos on [0, 1], thus there exists such ε > 0 that for n(D) < ε it holds 1
hj

> m

for m positive integer - fixed. Therefore (1) implies H(f, ε) > logm, and for m →∞
we obtain the assertion.
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